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Abstract

Speaker identification system (or voice based biometric), which determines the

speaker of a given speech utterance from a group of people, is predicted to have

huge importance in near future. Speech being the natural means of commu-

nication for humans, fits really well in our requirement for less complex and

more secure means of identification, followed by interaction with the electronic

devices, than the existing password based methods. But speaker identification

system faces poor performance due to a mismatch between the train and the

test speech conditions. A mismatch can arise due to factors like differences in

handset, transmission channel or microphone; environmental noise; emotional

state of the person; voice disguise, etc. It is also referred to as mismatched

problem.

In this thesis, mismatched problem, which arises due to environmental noise

and voice disguise has been focused. To tackle performance degradation be-

cause of environmental noise mismatch, a hybrid method for feature frame

selection has been developed. It combines voice activity detection (VAD) and

variable frame rate (VFR) analysis methods. The hybrid method efficiently

captures the speech part rejecting the non-speech, and the changes in the tem-

poral characteristics of the speech signal considering the signal to noise ratio.

Mismatched problem which arises because of the adoption of voice dis-

guise is less researched and poses threat to the existing speaker identification

systems. Therefore, mismatch due to voice disguise has been focused in this
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thesis. Robust methods have been developed at the feature, training and the

testing level. It has been found that, the use of fixed frame shift, typically

of 10ms, leading to a fixed frame rate for acquiring the frames for feature ex-

traction, might not give the best identification accuracy under voice disguise.

Therefore, a multiple-model framework which combines features obtained by

utilizing three different frame shifts of 3ms, 6ms and 9ms has been developed,

and it has shown improved performance over the fixed frame shift method.

Four multistyle training strategies have been investigated for tackling voice

disguise mismatch seen in a security conscious organization. It has shown en-

couraging results over the single style training. Further a fusion framework,

utilizing the best two investigated multistyle training strategies has been pro-

posed. It has shown an overall improved performance over single style training,

investigated multistyle trainings and the multiple-model methods.

Finally, a method combining multiple frame rates for feature extraction and

reliable frame selection at the decision level has also been developed. It has

shown an overall better performance over the baseline methods.

Since, voice production is governed by brain, an attempt has also been made

to study the brain signal response for motor imagery tasks. This might prove

beneficial in future for improving the speaker identification system. A Brain

Computer Interface (BCI) to classify motor imagery tasks from the same limb

has been studied. For this, a feature selection strategy for brain signal has also

been proposed. It consisted of channel selection based on Fisher ratio and time-

segment selection by visual inspection. It has shown improved performance over

the baseline system.
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Dansk Abstrakt

Højttaler identifikation system (eller stemme baseret biometrisk), bestemmer

højttaleren af en givet tale udtalelse fra en gruppe mennesker. Det er forudsagt

at have stor betydning i den nærmeste fremtid. Tale er det naturlige kommu-

nikationsmiddel for mennesker. Det passer rigtig godt i vores krav til mindre

komplekse og sikker identifikationsmidler, efterfulgt af interaktion med de elek-

tronis ke enheder, end de eksisterende adgangskode baserede metoder. Men

højttaler identifikation systemet st̊ar over for d̊arlige ydeevne p̊a grund a mis-

forhold mellem træning og teste tale miljø. En misforhold kan opst̊a p̊a grund

af faktorer synes godt om forskelle i h̊andsæt, transmission kanal eller mikro-

fon; miljøstøj; følelsesmæssige tilstand af personen; stemme forklædning, mv.

Det omtales ogs̊a som mismatchet problem.

I denne afhandling er mismatchet problem, der opst̊ar som følge af miljøstøj

og stemme forklædning, blevet fokuseret. At løse nedgang i identifikationsnøjagtighed

p̊a grund af miljøstøj-fejlpasning, en hybrid metode til plukning af talrammen

er blevet udviklet. Den kombinerer stemme aktivitets detektering og variabel

ramme sats analyse metoder. Hybrid metoden indfanger effektivt taledelen, og

afviser ikke-talen, og ændringerne i talesignalets tidsmæssige egenskaber under

hensyntagen til signal til støjforholdet.

Mismatchet problem, der opst̊ar p̊a grund af vedtagelsen af stemme forklæd-

ning, er mindre undersøgt og udgør en trussel mod de eksisterende højttaler

identifikations systemer. Derfor har mismatch problem p̊a grund af stemme
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forkl̊adning været fokuseret i denne afhandling. Robuste metoder er udviklet

p̊a tre niveauer, nemlig featureudtræk, træning og test. Det har vist sig, at

brugen af fast ramme skift, typisk 10ms, hvilket fører til en fast billedfrekvens

til ramme plukning muligvis ikke giver den bedste identifikations nøjagtighed

under stemme forklædning. Derfor er der udviklet en tilgang, der kombinerer

flere modeller. Her er der udviklet en model, som udnyttede funktioner opn̊aet

ved anvendelse af tre forskellige rammeforskydninger p̊a 3ms, 6ms og 9ms. Det

har vist forbedret ydeevne over den fast billedfrekvens metode.

Fire multi-stil trænings strategier er blevet undersøgt for at tackle mismatch

p̊a grund af stemme forklædning set i en sikkerhedsbevidst organisation. Det

har vist opmuntrende resultater i sammenligning med single-stil træning. End-

videre er der foresl̊aet en fusion ramme, der udnytter de bedste to undersøgte

multi-stil trænings strategier. Det har vist en overordnet forbedret ydeevne

i forhold til single-stil træning, undersøgt multi-stil træning og mange-model

metoder.

Endelig er der udviklet en metode, der kombinerer flere billedfrekvens til

ekstraktion af funktioner og p̊alidelig ramme plukning p̊a beslutningsniveau.

Det har vist bedre ydeevne end basislinje metoderne.

Siden stemmeproduktionen styres af hjernen, er der ogs̊a forsøgt at studere

hjernens signalrespons for fantasi af motoraktivitet. Dette kan vise sig at være

gavnligt i fremtiden for at forbedre højttaleridentifikations systemet. En hjerne

computer grænseflade til klassificering af forestillede motoriske aktiviteter fra

samme lemmer er blevet undersøgt. Til dette er der ogs̊a foresl̊aet en fea-

turevalgsstrategi for hjerne-signal. Det bestod af kanalvalg baseret p̊a fisher

ratio og tidssegmentvalg ved visuel inspektion. Det har vist forbedret ydelse i

sammenligning med basislinje metoderne.
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Chapter 1

Introduction

1.1 Speaker Identification

Determining the speaker of a given speech utterance from a group of reference

speakers is referred to as speaker identification, and a machine providing this

task is referred to as speaker identification system. It is also commonly known

as voice based biometric [1, 2].

Speaker identification comes under the broad category of speaker recogni-

tion, which in general, tackles the problem of finding out the speaker of a given

speech sample. Speaker recognition is mainly classified into two categories:

speaker identification and speaker verification as shown in Fig. 1.1 below. In

speaker identification, the speaker of the given speech sample can be anyone

amongst the M reference speakers. Determining the correct speaker requires

M comparisons for similarity measure of the given speech sample with each

of the M reference speakers. The speaker which gives the highest similarity

measure value is decided as the speaker of the given speech sample. There-

fore, an increase in the number of reference speakers, means, more number of
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Whose 
voice is 
this ? Rosie(1)

Mary(2)

John(3)

Leena(M)

Input: 
Speech 
utterance 
sample

Speakers

         M 
comparisons

Output: 
Mary’s 
speech

(a) Speaker Identification

Is the 
claim 
correct? Rosie(1)

Mary(2)

John(3)

Leena(M)

Input:This is 
Mary’s 
speech 
utterance 
sample

Speakers

         1 
comparison

Output:
True

(b) Speaker Verification

Figure 1.1: Types of Speaker Recognition System. (a) Speaker Identification.

(b) Speaker Verification.
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comparisons which can lead to a decrease in the accuracy of the speaker iden-

tification system. In speaker verification, the given speech sample is spoken

by a particular speaker is already claimed. The problem is to only determine,

whether the claim is true or false. It requires only one comparison with the

claimed speaker and the accuracy of the system is not affected by an increase

in the number of reference speakers [3].

Speaker identification can be termed as open or closed. In an open speaker

identification, the speaker of the given speech sample can be anyone belonging

to either the set of M reference speakers or from outside this set. Here, the

task is to first determine, whether the given speech sample belongs to the set of

M reference speakers, and then only the usual identification process is carried

out. This system can therefore take M+1 decisions, including the decision that,

the given voice sample did not belong to any of the reference speakers and is

an outsider. In a closed speaker identification, the speaker of the given speech

sample always belongs to the set of M reference speakers.

Speaker identification can be further termed as text-dependent and text-

independent. In text-dependent speaker identification, the words of the given

speech sample whose speaker is required, should be from a predefined set of

words. On the other hand, for text-independent speaker identification, such

constraints are not there and the given speech sample can consist of any words

of the speaker’s choice. It is easy to understand that, the text-independent

speaker identification is more difficult than the text-dependent [4] - [8].

In this thesis, closed text-independent speaker identification system is stud-

ied, where the problem is to find the speaker of a given speech utterance from a

group of M reference speakers (closed). The given speech utterance consisted of

words or sentences of the person’s choice and no constraint is put in this regard

on the person (text-independent). For convenience, closed, text-independent

speaker identification system will be simply referred to as speaker identification

3



system in the rest of the thesis.

1.1.1 Applications

With the fast advancement in technology, more and more applications requiring

speaker identification are being designed. The existing password/token based

identification will soon become difficult to manage as the number of passwords

to be remembered will become large. Speech, being the natural means of

communication for humans, has the potential to be adopted more widely in

future for biometric based applications. Using speech instead of password for

identification will reduce the complexity with which humans interact with the

machines. It will also offer better security, as it cannot be stolen, and will

be particularly liked by the elderly members of the society and people with

mental disabilities because of its ease of use. People will be more cooperative

in providing speech for identification, as compared to other modalities like face

and iris, as some communities like, Muslim women, hide their face with cloth

as part of their religion and might not be comfortable providing their face for

identification, also capturing the iris image, requires laser irradiation, which

can pose health problems.

Since, voice based system, like telephone is already in use, speech based

biometric for remote applications can also be more easily implemented com-

pared to other biometrics like, face, iris and finger. Moreover, finger, iris and

face consist of only physical characteristics, on the other hand, speech consist

of two different types of characteristics: “physical” and “learned”. Physical

characteristics occur in voice because of the structure of the vocal tract, larynx

and voice production organs, whereas, learned characteristics are acquired by a

person from his/her environment in a period of time. For example, the accent

of an European person will be quite different from an Asian person, even if,

they both speak the same sentence of the English language. Because of these

4



two characteristics, i.e. physical and learned, speech offers much more research

possibilities and application areas, which are still not fully explored.

For the communication between humans and machines through voice, we

need to be successful in the following:

1. Machines, which can understand, “what is being spoken” i.e. the content

of the speech, referred to as speech recognition.

2. At the same time, machines being intelligent enough to identify, “who is

speaking”, referred to as speaker recognition.

If the above two things, successfully come into reality, it will revolutionize

the current electronic consumer market. Imagine an old person giving com-

mand to the smart television through voice instead of remote control about

the channel he/she wishes to view or about other functionality like volume or

colour. The smart television on the other hand, first identify the person as

one amongst the authorized users (speaker identification) and then only pro-

ceeds for carrying out his/her commands (speech recognition). Using voice in

place of remote control, ensures both security and ease of use. It should be

noted that, smart television is just one example, there can be many more ap-

plications like smart mobile phone, smart door lock, smart washing machines

and smart robots, which can utilize this technology. Apart from these, speaker

identification finds applications in surveillance, border control, forensic science,

identifying the hoax caller, identifying the kidnapper and monitoring the staff

in a security conscious organization [9, 10].

1.2 Speaker Identification System

The speaker identification system can be broadly divided into three phases:

feature selection and extraction phase, training or enrollment phase and testing

5



or identification phase [1, 3].

1. Feature selection and extraction phase: This comprises of selecting im-

portant parts of the time-domain speech signal from the less important

ones and then extracting relevant features from these parts from the irrel-

evant ones. Relevant features are the ones, which are found in abundance

in the speech samples from the same speaker than from different speakers

and has the ability to be unique and robust with respect to noise. A list

of ideal characteristics of feature is listed in [11]. It says that, ideally

• A feature should occur frequently and naturally in speech.

• It should differ from other people’s feature but for each speaker it

should be consistent.

• It should not vary with age, emotional state or health of the person.

• It should be robust to background noise.

• It should not get modified, if the person deliberately or non-deliberately

modify his/her speaking style.

2. Training or enrollment phase: In the training phase, speech samples are

collected from each of the M reference speakers. From the collected speech

samples of each speaker, features are then selected and extracted. Finally,

these features are used to develop a model for each of the speaker, re-

sulting in M speaker models. The modeling process tries to search for

a pattern which is unique for every speaker, i.e., the occurrence of the

pattern will be more within the speech samples from the same speaker

than from different speakers. The training process is shown in the Fig.

1.2(a).

3. Testing or identification phase: In the testing phase, a speech utterance

from an unknown speaker will be given. A comparison of this speech

utterance with all the M speaker models developed during the training

6



(a) Training the speaker model

(b) Testing / Recognition

Figure 1.2: Speaker identification system [12]. (a) Training. (b) Test-

ing/Identification.

phase will be carried out for similarity measure. The model scoring the

highest similarity measure will be decided as the correct speaker of the

given speech utterance. The testing process is shown in the Fig. 1.2(b).
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1.2.1 Performance Evaluation

The performance of the speaker identification system is measured using the

identification accuracy. It is defined as

Identification Accuracy

=
the number of correctly identified utterances

total number of utterances tested from the total speakers

× 100% (1.1)

1.3 Challenges Faced in the Speaker

Identification - Motivation

Speaker identification research has started long back and in spite of understand-

ing the huge benefits of it for future applications, it is still not considered very

reliable and successful in the present scenario. It faces the problem of signif-

icant decrease in the performance (identification accuracy), when a mismatch

between the training and the test data conditions occur. This is referred to as

mismatched problem. A mismatch can occur because of environmental noise,

noise incorporated by the voice recording device, because of ageing, throat in-

fection, emotional state of the person, etc. A mismatch can also occur when

a person intentionally changes his/her voice, referred to as voice disguise, ei-

ther to hide his/her own information or to sound like a target speaker to steal

the target’s information [3, 13]. The present study will focus on increasing the

identification accuracy, the ultimate goal of the speaker identification system

under the mismatched conditions, particularly, under the environmental noise

and voice disguise scenarios.
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1.4 Thesis’s Objectives

Hypothesis: Relevant feature selection and extraction from the speech signal

can greatly enhance the efficiency and robustness of the speaker identification

system under adverse conditions.

Statement of thesis’s objectives:

• To search for feature selection & extraction methods from the speech

signal with an aim to increase the efficiency and robustness of the speaker

identification system under mismatched conditions.

• To explore and design robust and efficient training methods for the speaker

identification system to tackle the mismatched problem.

• To explore and design robust and efficient testing methods for the speaker

identification system to tackle the mismatched problem.

1.5 Contribution

Through this thesis work, the following contributions have been made:

1. The performance of the speaker identification system decreases markedly

in real life scenario when the test speech data contain environmental

noises as well, like the car noise, train noise and street noise, creating a

mismatch with the clean train speech data. Due to this, applications re-

quiring mobile phones to provide speech samples for identification do not

work efficiently. In an attempt to solve this problem, a hybrid technique

combining two frame selection techniques, namely, Voice Activity Detec-

tion (VAD) and Variable Frame Rate (VFR) method has been developed.

This method has the following salient features:
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• It selects the speech part rejecting the silence part from the speech

signal.

• It efficiently captures the speech characteristics like vowels which

last for a long duration and plosives which occur for short duration

in the speech.

• It takes into account the signal to noise ratio.

The developed technique will be particularly useful for accessing remote

applications/devices shared by many users. Here, speech for identification

can be sent through mobile phones. Once the user is identified as an

authorized person, he/she gains access to the applications/devices and

can avail personalized services.

2. Few studies dealing with the mismatched condition which occur because

of voice disguises are available as compared to the mismatched conditions

due to environmental noises or voice recording device/channel variations.

Voice disguise happens when a person intentionally modifies his/her voice

either to hide his/her own identity or to sound like a target to steal

the target’s information/resources. This thesis therefore focuses on the

mismatched problem arising out of voice disguises and at this end, the

following contributions have been made:

• Conventionally, for feature extraction, a frame length of 25-30 ms

with a fixed frame shift of half the frame length has been shown

to produce the best identification accuracy and robustness against

mismatched conditions [14], [15], [16]. But for voice disguise, the

usage of this fixed frame shift, providing a fixed frame rate might

not produce the best results. This can be due to the fact that

speaking rate of the same person can differ. Therefore, different

frame shifts, in the range of 1-10 ms keeping the frame length fixed

to 25 ms, providing different frame rates has been investigated for
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voice disguise. Based on the investigation results, a multi-frame

rate based multiple-model method for training the speaker models

has been developed, and it has shown improved performance over

the conventional fixed frame rate method.

• Security conscious organizations require speaker identification sys-

tem to identify the person who can adopt voice disguise for leaking

sensitive information of the organization. To build speaker iden-

tification for this application, four variants of multistyle training

have been investigated for voice disguise. A fusion technique, uti-

lizing the two best investigated multistyle trainings out of the four

at the decision level has been developed. The fusion technique has

shown an overall better and more stable performance compared to

the investigated multistyle trainings, multiple-model trainings and

the conventional single style trainings.

• Further, a method has been developed to measure the reliability

of the test speech sample. Through this method, reliable frame

selection of the test speech sample has been carried out. Finally,

a method combining multiple frame rate for feature extraction and

reliable frame selection at the decision level has been developed. The

method has shown an overall better performance compared to the

conventional method.

3. Lastly, as speech production is governed by human brain, information

from brain signals may complement the speech features in increasing the

robustness of the speaker identification system. With this vision in mind,

a Brain Computer Interface (BCI) has also been studied in this thesis. It

is used to classify motor imagery tasks from the same limb. To improve

the performance of the system, a feature selection strategy consisting

of time-segment selection through visual inspection and channel selection

through Fisher ratio analysis in the frequency domain has been proposed.
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Though in this initial study, we have not recorded brain signal activity

for voice, future studies will aim this, and the fusion of the brain signal

and the speech information might lead to improved speaker identification

system.
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1.7 Structure of the Thesis

The rest of the thesis is organized as follows. The next chapter discusses the

state of the art in the speaker identification research focusing the mismatched

problem. The Hybrid feature frame selection method, which combines the VFR

and the VAD methods is presented in chapter 3, along with the experimental

evaluations under various environmental noise scenarios. The multi-frame rate

based multiple model for speaker identification of disguised speech is described

in chapter 4. Chapter 5 discusses the different variants of the multistyle training

strategies and the fusion technique, which is developed based on it, for the

speaker identification under voice disguise scenario. The method to measure

the reliability of the test speech sample and based on which, the multiple

frame rate feature extraction and reliable frame selection at the decision level

is discussed in chapter 6. BCI for the classification of motor imagery tasks

from the same limb is discussed in chapter 7. Finally, chapter 8 concludes the

thesis with a discussion on future work.
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Chapter 2

State of the Art

2.1 Mismatched Problem

Speaker identification system is predicted to have huge importance in the com-

ing future. With humans inclining more and more towards electronic equip-

ments for their daily activities, a need for secure and easier method of interac-

tion with these equipments is foreseen. For humans, speech is the most natural

means of communication and can be easily provided for identification, as com-

pared to other modalities like face or iris. Some communities, like, Muslim

women are supposed to cover their face with a cloth as religious belief and

might not be comfortable providing their face for recognition. Iris requires use

of laser for capturing the image, which can have some health risks. Since, tele-

phony system is already in use, the implementation of the speaker identification

system for secure exchange of information from a distance can also be much

easily achieved. Therefore, biometric based on voice for secured communica-

tion with the machines will be most likely preferred over other biometrics like

finger, face and iris based biometric.

15



Though research in speaker identification started long back, it still faces

poor performance because of many factors. One of the most common problem

seen in the speaker identification research is mismatched problem. When the

training and the test conditions are similar, it is referred to as matched con-

ditions. Under matched conditions, speaker identification system is observed

to have really good performance. In [17], temporal variations of pitch in the

speech was used for speaker recognition, 97% identification accuracy was found.

But when a dissimilarity between the training and the test conditions are seen,

referred to as mismatched problem, the performance of the speaker identifica-

tion system significantly decreases. One example of the mismatched condition

can be seen, when the speaker models are trained using speech data recorded

in a quite environment, whereas, the test data contains environmental noises,

like, train noise, car noise and street noise as well [3, 13].

2.1.1 Factors Causing the Mismatch:

Mismatched condition can occur because of various factors. Some of them are

given below [9]:

1. Speaker based mismatch: The same person can speak a particular word/sentence

in different ways depending upon the situation. It is also called as mis-

match due to intra/within speaker variability. Following can be the reason

for having differences in voice from the same person:

• When a person is doing some stress related work, like riding a heavy

vehicle such as aeroplane, truck or train [18,19].

• The emotional state of the person like anger, grief, excitement [20,

21].

• Speaking louder than normal in the presence of background noise,

also known as Lombard effect [19,22].
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• When the person intentionally alters his/her voice to hide their own

identity or to sound like a target to steal the target’s resources,

called voice disguising [23]. Electronics devices were also used for

voice disguising. A typical example is a Voice Changer software [24]

• When the person is suffering from some illness, like throat infection

or due to ageing [25].

2. Environment based mismatch: This mismatch occurs because of back-

ground noise like train, car and street noise [3,13], reverberation [26] and

because of microphones which are placed at a distance [27].

3. Voice recording device based mismatch: This mismatch occurs because of

differences in handset (mobile phones, landlines, cordless phone), trans-

mission channel and microphone [28,29].

2.1.2 Addressing the Mismatched Problem

Early speaker identification research focused on the telephone handset or com-

munication channel based mismatch because during this time the telephone

system were mostly fixed and not movable. But with the invention of mobile

phones and smart phones, the focus of the mismatch has changed to the envi-

ronmental/background noise. With the advancement of the technology, many

other types of mismatch occurred, listed in the subsection 2.1.1, because of

which the performance of the speaker identification system suffered. Several

robust methods have been tried to mitigate the mismatch arising due to these

factors. The robust methods can be applied at the different levels of the speaker

identification system, namely, Feature level, Speaker model level (Training) and

the Score/Decision (Testing) level.

• Feature level: In this, the method directly works on the speech signal.

A close match between the train and the test speech conditions are tar-
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geted. It tries to select and extract robust features with respect to chan-

nel/background variations. .

It is desirable to remove the non-speech part from the speech signal called

the Voice Activity Detection (VAD), as it carries no speaker specific infor-

mation and in the presence of noise degrades the identification accuracy

markedly. To achieve this, identification of speech and silence part in

the signal is required. Several algorithms have been developed for this,

which were mostly based on the amplitude level, short term energy and

zero crossing rate of the speech signal [30]. In [31], a Gaussian statistical

model based VAD is presented, which employed decision directed param-

eter estimation method for likelihood ratio test. A VAD which is based,

not only on Gaussian model, but also on complex Laplacian and Gamma

probability density function has been utilized in [32] for improving the

performance. In [33], power spectral deviation utilizing Teager energy

has been used for the VAD. It has shown better performance over con-

ventional methods in various noisy environment. A VAD based on the

long-term pitch divergence, in which bionic decomposition of the speech

signal is done, is presented in [34]. It has shown better performance over

6 analyzed VAD algorithms.

Robust features were also developed. Linear Prediction Cepstral Coef-

ficient (LPCC) [35], which models the human voice production organ

became very popular. A modified LPC and wavelet transform combi-

nation based speech feature has been tried in [36] and has shown good

performance for environmental noise. It has been observed that features

which mimic the human hearing system can prove to be more robust.

The Mel-Frequency Cepstral Coefficient (MFCC) showed superior per-

formance over various other feature in [37] for speech recognition. A

multitaper MFCC which is based on multiple time domain windows

with frequency domain averaging has shown good performance in [38]

for speaker verification. An auditory based feature extraction method

18



inspired by the traveling waves in the cochlea [39] and a Karhunen-Loeve

transform (KLT) [40] based robust speaker identification system has also

been developed. In [41], a binary quantization of the feature vector is

carried out in order to increase the robustness of the speaker recognition

system under noisy condition. A binary time-frequency (T-F) mask is

used in [42], to provide information about whether the noise is stronger

than the speaker characteristics in the T-F unit under observation and

it has shown good performance under additive noise condition. A fusion

of MFCC and statistical pH features was proposed in [43] for speaker

verification under environmental noise. A novel feature called the Power

Normalized Cepstral Coefficients (PNCC) has been presented in [44] for

speaker recognition under noisy environments. This feature uses power-

law nonlinearity instead of log nonlinearity which is used in MFCC, and

a noise-suppression algorithm which depends on asymmetric filtering. In

addition a temporal masking module is also included. It has shown better

recognition rates over MFCC and RASTA-PLP. A fusion of Subglottal

Resonances (SGRs) and cepstral features was proposed in [45]. It showed

that, SGRs can be used as complimentary features with the noise robust

PNCC and LPCC features for improving the efficiency of speaker identifi-

cation under noisy environment. Since, cepstral features have been shown

to produce a very high speaker identification accuracy, therefore various

normalizations techniques like cepstral mean subtraction [46], cepstral

mean and variance [47], relative spectral (RASTA) [48] and feature warp-

ing [49] have been applied to these feature for mismatch compensation.

• Speaker model level: In this level, robust methods are developed to model

the speaker using the features obtained from the speech signal. Gaussian

Mixture Model (GMM) has shown a good performance in [50]. A Gaus-

sian Mixture Model Universal Background Model (GMM-UBM) has been

used in [51] for text-independent speaker verification. Here, a background

model using a large GMM with 2048 mixtures was developed utilizing the
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speech data from 90 persons (45 females and 45 males), and it was then

used for all the claimants. This model was evaluated for 1996 NIST

speaker recognition evaluation corpus [52]. It has been observed that, a

system which used GMM-UBM with Bayesian adaptation of claimant

model has produced superior results over UBM with claimant model

which was not adapted from the UBM. A boosted slice classifier has been

introduced in [53] for robust speaker verification task. A transformation

algorithm has been developed in [54] for transforming the speaker model

in order to be more robust to acoustic mismatch. It utilizes locally col-

lected stereo database and basically increases the variances of the speaker

model by a limit for this purpose. A joint factor analysis (JFA) approach

was presented in [55] in order to deal with the session variability. An

i-vector framework has been proposed in [56], which combines the chan-

nel and the speaker into a single space called the total variability space.

Support Vector Machine (SVM) utilizing Gaussian supervectors has also

been widely used [57]. A colored noise based multi-condition training

technique is proposed in [58], in which noisy speech data is generated us-

ing white Gaussian sequence and is then used in training speaker models

in order to handle the unknown environmental noise in testing condi-

tion. In [59], a universal compensation technique is proposed, which is

developed combining the multi-conditioning training and missing feature

method to study and achieve the robust speaker recognition under noisy

condition. A novel speaker binary key representation space is proposed

in [60], in order to make the system adaptable to different environmental

condition. Deep neural network which has shown good performance for

speech recognition [61] has also been investigated for speaker recognition

in [62].

• Score/ Decision level: In this level, an utterance called the test utterance

from an unknown speaker will be given. A comparison of this utterance

with all the speaker models developed in the training phase will be car-
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ried out for similarity. The model scoring the highest similarity measure

will be the speaker of the given test utterance. Score compensation tech-

nique like H-norm, T-norm and Z-norm [3] are attempted in order to

address the channel effects under different condition. A special kind of

weighting model rank is proposed in [63] to increase the robustness of

the system. H-norm and T-norm combination technique HT norm [64] is

also used in order to handle mismatched condition during training and

testing phase. Several combination techniques from the decision obtained

from two classifiers has been investigated in [65]. The two classifiers used

differ in their feature set. One utilized the MFCC feature and the other

used a new Parametric Feature Set (PFS). A fast scoring algorithm and

Advanced Missing Feature Theory (AMFT) has been developed in [66]

in order to handle various background noises. In [67], speech recordings

from Supreme Court of the United States (SCOTUS corpus) were used

for identification under reverberant condition. A 100% identification ac-

curacy has been reported for 1 sec speech data using a combination of

Gaussian mixture model and monophone Hidden Markov Model (HMM).

A large number of studies have been carried out relating to channel and

environment related mismatch, which is discussed above. Relating to other

factors causing mismatch, few studies have been carried out . A mismatch

due to shouted and neutral speech has been studied in [68]. The identification

accuracy decreased from 100% (matched) to 8.71% (mismatched). To tackle

this, MFCC feature compensation through GMM mapping method has been

done. Another mismatched condition because of speaking under stress has been

reported in [69], it also showed significant decrease in speaker identification

accuracy. One of the factor, i.e, voice disguise can pose a serious threat to

speaker identification research in future. Some of the research addressing voice

disguise have been done [70]- [73], but it needs to be focused, and is one of the

goal of this thesis work.
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Research studies utilizing brain signals for person identification has also

been done [74]. Studies in neuroimaging [75] revealed that, different cortical

regions were activated for processing different types of vocal information, like

speaker identity and language information. Therefore, brain signals captured

while the person is speaking or imagining speaker, can be used for identifying

a person. In [76], brain signals from the subjects were captured, when they

imagined speaking two syllables /ba and/ku and is then utilized for training

and identification task. It has reported an accuracy of 99.76%. Inspired by this,

a study on Brain Computer Interface for classifying motor imagery tasks has

also been carried out in this thesis. So that in future, the fusion of the speech

signals and the brain signals can be investigated for improving the speaker

identification under mismatched scenario.
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Chapter 3

Feature Frame selection - A

Hybrid Approach for

Environmental Noise

Corrupted Speech1

3.1 Introduction

In chapter 2, it has been discussed that speaker identification systems face

marked degradation in performance under mismatched conditions arising out

of many factors. One commonly seen mismatch scenario is when speaker mod-

els were built from clean speech data and the test speech data were corrupted

1This chapter is based on the following article: S. Prasad, Z.-H.Tan, R. Prasad “Feature

frame selection for robust speaker identification: A hybrid approach.”, which is submitted to

the journal Wireless Personal Communications.
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with environmental acoustic noises as well. In this chapter, we will be focus-

ing on this particular type of mismatch scenario arising due to environmen-

tal/background acoustic noises.

Speech signals are non-stationary signals. They are cut into smaller seg-

ments called frames, typically in the range of 25-30 ms long size with a frame

shift of half the frame size in which they exhibit quasi-stationary behaviour

for processing. But this method of frame making from the speech signal, es-

pecially when environmental noises are present is inefficient. Frame making

should take into account the following points in case of mismatch due to envi-

ronmental noise:

1. Speech signal contains both fast changing and steady state regions. Fast

changing regions such as plosives occur for a very short period and there-

fore, more frames are needed from these regions to capture its character-

istics properly. On the other hand, steady state regions, such as, vowel

occur for a longer duration and therefore less number of frames are needed

from these regions, so that extra addition of same type of speech charac-

teristics can be avoided.

2. Speech signal also contains both speech and non-speech regions. The ef-

fect of frame making from the non-speech part when dealing with clean

speech is not severe and may have a positive effect on the speaker identifi-

cation accuracy. But, in the presence of environmental noise, non-speech

part may greatly decrease the speaker identification accuracy. Therefore,

non-speech part should be avoided for frame making.

3. Depending on the signal-to-noise ratio, a frame of the speech signal can

be termed as reliable or unreliable. The unreliable frames should be

discarded.

4. The average total number of frames made per second (frame rate) should

be approximately equal to the traditional method, otherwise it will re-
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quire more storage space and take more time for processing, which might

not be suitable for some applications.

A frame selection method based on the average frame energy above a thresh-

old has been done in [77]. A feature frame selection method [78], in which min-

imum redundancy between selected frames but maximum relevance to speaker

models were targeted. In [79], a distance metric based frame selection, which

is performed on the spectrum of the speech instead of the time-domain has

been done. The norm of delta-MFCC vector has been used in [80] for detecting

spectral changes like steady state regions and transient regions. Voice activ-

ity detection (VAD) for separating speech and non speech part has been done

in [81] using a novel likelihood ratio sign test which took into account long term

speech information. For improving VAD, spectral subtraction speech enhance-

ment is applied before energy based VAD in [82]. A feature frame selection

based on the weights assigned by two models: one from speech and the other

from noise has been presented in [83]. These studies took into account the

above referred points either individually or in combination but the joint study

of all the above four referred points for the speaker identification application

under environmental noise is not seen. Therefore, this chapter attempts to

study the speaker identification system under environmental noise scenario by

taking into account all the above four referred points.

A variable frame rate (VFR) analysis method in which frame selection de-

pended on speech signal characteristics and was also based on signal to noise

ratio (SNR) weighted energy distance method has shown good performance

for speech recognition [84]. In speech recognition, instead of identifying the

speaker of the utterance, the words in the utterance are determined. This chap-

ter investigates this SNR weighted energy distance based VFR method [84] for

the speaker identification application under environmental noise. Further, this

method has been combined with the statistical model based VAD [31] method

for proposing the hybrid frame selection method for speaker identification un-
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der environmental noise.

The rest of the chapter is organized as follows. The next section describes

the hybrid feature frame selection method. Section 3.3 presents the experiments

conducted and discusses the results. Finally, Section 3.4 presents the summary

of the chapter.

3.2 Hybrid Feature Frame Selection

The hybrid feature frame selection method simply combines the frames se-

lected by two methods for feature extraction. The first method called the VFR

analysis method captures the frames based on the changes in the temporal

characteristics of the speech signal. It also takes into account the signal to

noise ratio during frame selection for the reliability measurement. The second

method called the VAD method selects only the speech part of the signal for

frame making, rejecting the non-speech part of the signal. Fig. 3.1 shows

the speaker identification system using the hybrid frame selection method for

feature extraction.

The VFR and the VAD methods are briefly presented below:

• VFR Based Frame Selection

The VFR analysis method selects frames according to the changes in the

temporal characteristics of the speech signal. In this, dense frames are

first created by using the fixed frame rate (FFR) method with a frame

size of 25ms and a very small frame shift of 1ms. Distances between two

adjacent frames are then calculated as the difference in energy. To mea-

sure the reliability of the frame, these distances are further weighted by

the signal to noise ratio. Finally, frames with accumulated SNR weighted

energy distance above a particular threshold will be selected and the rest
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Figure 3.1: Frame selection by the hybrid method [85].

will be discarded. This process created more number of frames for fast

changing regions and fewer frames for steady state speech regions.

The low-complexity VFR frame selection method [84, 85] can be imple-

mented using the following steps:

1. Dense frames of the speech signal are created using the FFR method

by keeping the frame size as 25ms and frame shift as 1ms.

2. The a posteriori SNR weighted energy distance of the frames are
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calculated as:

DSNR(t) = | logE(t)− logE(t− 1)| × SNRpost(t) (3.1)

where, logE(t) is the logarithmic energy of frame t, SNRpost(t) is

the a posteriori SNR value of the frame t and is given by:

SNRpost(t) = log
E(t)

Enoise
(3.2)

Calculation of the a posteriori SNR value of the frame t is simpler

than the a priori SNR value.

A priori SNR value is given by:

SNRprio(t) = log
Espeech(t)

Enoise
(3.3)

which requires an additional step of speech estimation from noisy

speech. In contrast, the a posteriori SNR value calculation did not

have to do this step as it utilizes the energy of the noisy speech

directly, making it less complex. Here, Enoise is the noise energy of

the frame t and is considered same for all frames. It is estimated by

taking the average energy of the initial 10 frames which are assumed

to be non-speech only and it approximately corresponds to 34ms of

the utterance.

3. The threshold function is calculated as :

T = DSNR(t)× f(logEnoise) (3.4)

where, DSNR(t) is the average of the weighted energy distances cal-

culated in Step 2) over the whole utterance. The function f is the

sigmoidal function, given by:

f(logEnoise) = A+
B

1 + e−2(logEnoise−13)
(3.5)

The constant value of 13 is used to make the turning point of the

sigmoid at an a posteriori SNR value between 15 and 20 dB. The pa-

rameters A and B determine the frame rate and its value calculation

is discussed in subsection 3.3.2.
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4. In this step, frames are finally selected or rejected based on an up-

dated accumulative distance. A posteriori SNR weighted energy

distances are accumulated as:

Acc(i) = Acc(i− 1) +DSNR(i) (3.6)

for frames i=1,2,3,..... The accumulative distance Acc(t) of frame t

is compared with the threshold T : if Acc(t) > T , frame t is selected

and Acc value is reset. The calculation of accumulated distance is

again started from frame i=t+1. This process is continued until a

decision on all the frames have been made.

• VAD Based Frame Selection

Gaussian statistical model based VAD [31,85] is used to select the active

speech part of the utterance. Here, Likelihood Ratio Test (LRT) is used

for decision making of speech and non-speech part.

1. A binary hypothesis can be made assuming additive noise as follows:

H0: Z(t) = N(t) (Speech absence)

H1: Z(t) = S(t) +N(t) (Speech presence)

Z(t), N(t) and S(t) represents the noisy speech, noise, and speech,

respectively at frame t and is given by the following k-dimensional

Discrete Fourier Transform (DFT) coefficients :

Z(t) = [Z0(t), Z1(t), ...., Zk−1(t)]T ,

N(t) = [N0(t), N1(t), ...., Nk−1(t)]T and

S(t) = [S0(t), S1(t), ...., Sk−1(t)]T

2. The probability density function conditioned on H0 and H1 are

given as follows, when Z(t), N(t), and S(t) are considered as asymp-

totically independent Gaussian random variables.
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p(Z(t) | H0) =

k−1∏
j=0

1

πλn,j
exp

(
− | Zj(t) |

2

λn,j

)
(3.7)

p(Z(t) | H1) =

k−1∏
j=0

1

π(λn,j + λs,j)
exp

(
− | Zj(t) |2

(λn,j + λs,j)

)
(3.8)

Here, λn,j and λs,j represents the variances of Nj and Sj , respec-

tively.

3. The likelihood ratio for the jth frequency bin is:

∧j ≡
p(Zj(t) | H1)

p(Zj(t) | H0)
=

1

1 + ξj
exp

(
γjξj

1 + ξj

)
(3.9)

where, ξj ≡ λs,j

λn,j
represents the a priori signal-to-noise ratio and

is estimated by the decision directed method [31]. γj ≡ |Zj(t)|2
λn,j

represents the a posteriori signal-to-noise ratio.

4. The final decision about presence and absence of speech is deter-

mined by the geometric mean of the individual frequency bands,

log∧ =
1

k

k−1∑
j=0

log∧j ≷H1
H0 η (3.10)

where, η represents a preset threshold.

Lastly, Speech frames are made using the active speech part selected by

the VAD. The FFR method is used for frame making and it utilizes a

frame size of 25ms with a frame shift of 10ms.

Frame selection by the VFR, VAD and the proposed hybrid technique are

shown in Figures 3.2 to 3.4 for the clean speech utterance, babble noise cor-

rupted speech utterance and the car noise corrupted speech utterance, respec-

tively. In the Figures, the first panel shows the time-domain waveform of the

speech utterance in which the decision about the active speech part and the

non-speech part made by the VAD is shown as a pulsed waveform. In the

pulsed waveform, the “0 level” shows the non-speech part and the “above 0
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level” shows the active speech part. Panel 2 shows the wideband spectrogram

of the speech utterance. Panel 3 shows the frame selection from the speech

utterance utilizing the FFR method in which 25ms frame size with 10ms frame

shift is utilized. The vertical lines represent frame selection at a particular

instant. Panel 4 depicts the frame selection from only the active speech part

selected by the VAD as shown in Panel 1. For frame selection FFR method is

utilized and a frame size of 25 ms with a frame shift of 10ms is used. Panel

5 shows the frame selection by the VFR method and Panel 6 shows the frame

selection by the hybrid technique (referred to as Proposed). The speech utter-

ance used for these figures is the utterance of the number “73” i.e. “seventy

three”.

It can be observed from the figures that, instead of selecting frames at a fixed

frame rate from the whole utterance (Panel 3), VAD selects frames at a fixed

rate but only from the active speech part of the speech signal (Panel 4). VFR

(Panel 5) tries to capture more frames at the transient regions, fewer frames at

the steady state regions and no frames at the non-speech regions. Observing

Fig. 3.3, it can be seen that VFR performed better than the VAD in rejecting

the non speech part before the start of the babble noise corrupted utterance.

For the car noise corrupted speech utterance (Fig. 3.4), VAD performed better

than the VFR in capturing the speech part. Therefore, combining the frames

selected by the VAD and the VFR method as in hybrid technique may improve

speaker identification accuracy under environmental noise condition, as it will

be adding up the different and complementary characteristics of the individual

methods.
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Figure 3.2: Clean speech utterance frame selection [85].
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Figure 3.3: Babble noise corrupted speech utterance frame selection at SNR of

15dB and 5dB [85].

33



0.5 1 1.5 2

-0.1

0

0.1 VAD

SPEECH
(1

)
A

m
pl

itu
de

(2
)

Fr
eq

ue
nc

y 
(k

H
z)

0.5 1 1.5 2
-0

2

4

0.5 1 1.5 2
0

0.5

1
x 10

-3

(3
)

Fr
am

es
(F

FR
)

0.5 1 1.5 2
0

0.5

1
x 10

-3

(4
)

Fr
am

es
V

A
D

0.5 1 1.5 2
0

0.5

1
x 10

-3

(5
)

Fr
am

es
(V

FR
)

0.5 1 1.5 2
0

0.5

1
x 10

-3

Time (s)

(6
)

Fr
am

es
(P

ro
po

se
d)

(a) 15dB SNR

0.5 1 1.5 2

-0.1

0

0.1 VAD

SPEECH(1
)

A
m

pl
itu

de
(2

)
Fr

eq
ue

nc
y 

(k
H

z)

0.5 1 1.5 2
-0

2

4

0.5 1 1.5 2
0

0.5

1
x 10

-3

(3
)

Fr
am

es
(F

FR
)

0.5 1 1.5 2
0

0.5

1
x 10

-3

(4
)

Fr
am

es
(V

A
D

)

0.5 1 1.5 2
0

0.5

1
x 10

-3

(5
)

Fr
am

es
(V

FR
)

0.5 1 1.5 2
0

0.5

1
x 10

-3

Time (s)

(6
)

Fr
am

es
(P

ro
po

se
d)

(b) 5dB SNR

Figure 3.4: Car noise corrupted speech utterance frame selection at SNR of

15dB and 5dB [85].
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3.3 Experiments and Results

The database used for conducting the different experiments has been briefly

described in subsection 3.3.1. The value of the parameter A and B used in the

threshold function (Equation 3.5), which decides the frame rate in the VFR

frame selection method needs to be calculated. This is carried out in subsection

3.3.2. Finally, subsection 3.3.3 presents the different speaker identification

experiments conducted for evaluating the hybrid feature frame selection method

and discusses the results obtained.

3.3.1 Database

YOHO database [86] and Aurora II database [87] were used to build the noisy

and clean YOHO database for conducting the various experiments of this chap-

ter.

YOHO database consisted of speech recordings in a quiet office environment

from 138 speakers (106 males and 32 females). Though some office noise was

present but it is considered as Clean YOHO speech only. Eight different types

of environmental noise, namely, Babble, Exhibition, Restaurant, Airport, Car,

Street, Subway and Train were taken from the Aurora II database and is arti-

ficially added to the clean YOHO speech at four different SNRs of 5dB, 10dB,

15dB and 20dB for generating the noisy YOHO database. For addition of the

noise to the Clean YOHO speech, an equal length signal is randomly cut from

the noise signal (assumed to be very large in comparison to the Clean YOHO

speech utterance) and is then added to the speech utterance at the desired

SNR. For doing this task FaNT software is utilized [88].

In YOHO database, the train and the test speech data were collected sep-

arately in three month’s time period. For the collection of training data, 4

recording sessions were conducted. Each session collected 24 speech utterances
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(approx. 5s long) per speaker. Therefore, for training each speaker model, 96

utterances were used making a total of 480s of speech. For test data collec-

tion, 10 recording sessions were conducted, collecting 4 unseen utterances from

each speaker. Therefore, a total of 40 utterances per speaker were collected for

testing. For evaluating the different speaker identification systems, 5520 test

utterances of approx. 5s length from all the speakers were utilized.

3.3.2 Average frame rate calculations

The number of frames selected per second (frame rate) by the VFR analysis

method can be controlled by varying the parameters A and B used in the

sigmoid function for the calculation of the threshold value (Equation 3.5). To

understand the effects of the parameters A and B corresponding to different

average frame rate on the speaker identification accuracy, different values of the

parameters A and B have been chosen as shown in Table 3.1. Using these A and

Table 3.1: Parameter A & B selection used in the threshold value for average

frame rate calculation in the VFR method [85]

Parameters Average frame rate (Hz)

A B

12 2.5 50

9 2.5 60

7 2 70

5 2 80

4 1.5 90

3 1.5 100
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Table 3.2: Identification accuracies (%) of the VFR method at different average

frame rates for clean and noisy speech [85]

Average frame rate(Hz)

Noise SNR

(dB)

100Hz

A=3,

B=1.5

90Hz

A=4,

B=1.5

80Hz

A=5,

B=2

70Hz

A=7,

B=2

60Hz

A=9,

B=2.5

50Hz

A=12,

B=2.5

Clean — 97.98 98.21 98.33 97.86 97.98 98.33

Babble

20 96.31 95.83 96.31 96.55 96.67 95.95

15 92.86 92.74 93.21 93.21 93.45 92.98

10 80.36 81.55 81.79 82.86 81.43 82.50

5 55.36 56.19 52.62 57.98 59.40 56.55

Car

20 94.52 94.17 94.52 94.17 93.69 93.81

15 84.88 85.60 85.83 85.24 85.95 84.17

10 63.69 64.05 63.45 63.93 65.36 64.88

5 40.95 41.43 37.36 41.07 41.79 38.10

Average 78.55 78.86 78.14 79.20 79.52 78.59

B values, speaker identification experiments were conducted on a smaller set of

21 speakers of the YOHO database for Clean, Babble and Car noise corrupted

test speech data. The identification accuracies obtained are tabulated in Table

3.2. From the table, it can be observed that, varying the parameters A and

B did not result in a significant change in the average speaker identification

accuracy across the clean and noisy test speech. The value of A=9 and B= 2.5

gave the best average identification accuracy across the Clean and the noisy

test speech. Since, the aim here is to get the highest speaker identification

accuracy, therefore, for all further experiments involving VFR analysis method,
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either individually or in hybrid, the parameter value for A and B will be chosen

as 9 and 2.5, respectively, corresponding to 60 Hz frame rate. The proposed

hybrid frame selection method combines the frames selected by the VFR and

the VAD method. With the parameter value of A=9 and B=2.5 corresponding

to 60 Hz frame rate of the VFR analysis method, average frame rate of the

proposed hybrid frame selection method was found out to be approx. 110 Hz.

The value of 110 Hz is considered optimal, which is near to the conventional

FFR analysis of 100Hz. Therefore, almost same storage space will be required.

3.3.3 Speaker Identification Experiments

& Results Discussion

The a posteriori SNR weighted energy distance based VFR method [84], [89]

has shown better performance than other VFR methods [90], [91] for the speech

recognition application. Therefore, in this chapter, a posteriori SNR weighted

energy distance based VFR method has been investigated for the speaker iden-

tification experiment and is also taken as one of the baselines. It is called as

Bsln-VFR. The standard Gaussian statistical model based VAD [31] is taken

as the second baseline system. It is called as Bsln-VAD. Apart from these two

the conventional FFR analysis method, which employs no robustness method

has also been included for the performance comparison. It is called as Bsln-no

robustness method. Speaker identification experiments were conducted for the

total 138 speakers for the Bsln-VFR, Bsln-VAD, Bsln-no robustness and the

hybrid feature frame selection method (called Proposed HVV), for the clean

and noisy YOHO test data at 4 different SNRs. Twelve MFCC excluding the

0th coefficient were extracted from the frames as features and 64 components

Gaussian mixture model were used for speaker modeling. The model which

gave the highest likelihood measure of the test utterance has been decided as

the speaker of the test utterance.

38



The identification accuracies obtained for the Bsln-no robustness, Bsln-

VFR, Bsln-VAD and the Proposed HVV method under various noise scenarios

and clean condition are tabulated in Table 3.3.

From the table, it can be observed that the Proposed HVV method has

shown better performance than the baseline methods for all noise scenarios

across different SNRs except for the Babble noise corrupted speech at 5dB

SNR. When the average of the identification accuracies for the different noise

scenarios have been taken, the Proposed HVV showed an absolute improvement

of 5.54% and 9.50% and a relative improvement of 9.79% and 18.05% from

the Bsln-VFR and Bsln-VAD method, respectively. For the SNR of 5dB, the

Proposed HVV has shown an absolute improvement of 6.45% and 5.47% and

a relative improvement of 40.29% and 20% for the Street and Train noise,

respectively over the Bsln-VFR method. Proposed HVV has also achieved a

good performance over the Bsln-VAD at 5dB SNR for the Babble, Restaurant

and Airport noise. It has shown an absolute improvement of 20.53%, 16.79%

and 18.45% and a relative improvement of 127.28%, 102.69% and 81.35% for

the Babble, Restaurant and Airport noise, respectively over the Bsln-VAD.

It can be observed that, for Clean condition, Bsln-VAD has performed bet-

ter than the Proposed HVV. It can also be observed that, Proposed HVV has

performed better than the Bsln-VFR for Clean condition. Since, Proposed

HVV combines Bsln-VAD and Bsln-VFR methods, it can be concluded that,

under clean condition, the effects of Bsln-VFR is more on the Proposed HVV

as compared to the Bsln-VAD. However, under noisy conditions Proposed HVV

performed better than both Bsln-VAD and Bsln-VFR. Figure 3.5 shows com-

parisons between the different methods for various noise scenarios considered

in this chapter. The graph is obtained by averaging the identification accu-

racies across the four SNRs for a particular noise type. It also confirms the

better performance of the Proposed HVV method over the Bsln-VFR and the

Bsln-VAD methods.
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Table 3.3: Identification accuracies (%) obtained for the various methods under

clean & noisy conditions [85]

Noise SNR

(dB)

Bsln-no ro-

bustness

Bsln-

VAD

Bsln-

VFR

Proposed

HVV

Babble

20 67.71 88.81 88.25 91.91

15 46.63 73.51 81.91 86

10 22.79 46.86 65.05 70.61

5 6.35 16.13 36.82 36.66

average 35.87 56.33 68.01 71.29

Exhibition

20 37.13 78.25 75.91 84.16

15 17.71 54.19 55.64 65.25

10 7.78 26.65 26.63 32.72

5 3.05 9.48 7.81 10.71

average 16.41 42.14 41.5 48.26

Restaurant

20 70.59 88.74 88.51 91.79

15 50.38 72.34 82.12 85.97

10 24.6 45.45 63.67 69.76

5 6.76 16.35 29.35 33.14

average 38.08 55.72 65.93 70.17

Airport

20 60.66 88.74 88.67 91.82

15 39.49 75.69 82.04 86.64

10 18.91 52.79 67.31 72.44

5 6.64 22.68 37.13 41.13

average 31.43 59.98 68.88 73.01

Car

20 44.53 87.27 84.3 89.14

15 26.11 73.06 70.07 78.57

10 11.71 49.77 46.37 56.11

5 3.44 22.62 21.08 26.76

average 21.45 58.18 55.46 62.65

Street

20 46.12 82.23 79.08 86.46

15 27.5 63.71 64.96 73.93

10 12.78 39.99 40.48 51.16

5 5.02 18.33 16.01 22.46

average 22.86 51.07 50.13 58.5

Subway

20 29.15 74.6 73.77 80.98

15 11.86 48.95 53.77 60.77

10 4.21 20.74 26.63 30.82

5 1.12 7.32 8.56 9.92

average 11.78 37.9 40.69 45.63

Train

20 52.96 86.55 86.68 90.52

15 30.75 73.48 77.27 82.81

10 12.69 52.62 57.43 64.3

5 3.83 26.42 27.36 32.83

average 25.07 59.77 62.19 67.62

Total Average 25.34 52.64 56.6 62.14

Clean 91.32 96.74 91.78 94.98
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Figure 3.5: Comparison of the proposed and baseline method’s average identi-

fication accuracies under various noise scenarios [85]

Table 3.4: Proposed and the baseline methods average identification accuracies

(%) at different SNR values [85]

SNR

(dB)

Bsln-no

robustness

Bsln-

VAD

Bsln-

VFR

Proposed

HVV

20 51.11 84.4 83.15 88.35

15 31.3 66.87 71.03 77.49

10 14.43 41.86 49.2 55.99

5 4.53 17.42 23.02 26.72

Figure 3.6 shows the comparisons of the different methods of frame selection

at the four SNR values. The graphs are obtained by averaging the identification

accuracies across the different noise scenarios for a particular SNR value and

is also tabulated in Table 3.4. Here also, Proposed HVV method performed
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Figure 3.6: Comparison of the proposed and the baseline method’s average

identification accuracies (%) at different SNR values [85]

better than the other methods. For the SNR of 5dB, Proposed HVV obtained

an absolute improvement of 3.7% and 16.1% and a relative improvement of

9.3% and 53.34% over the Bsln-VFR and Bsln-VAD method, respectively.

3.4 Summary

This chapter proposes a hybrid feature frame selection technique for speaker

identification. It is based on the speech signal characteristics, signal to noise

ratio and speech and non-speech region of the signal. To achieve this, hybrid

technique combines the voice activity detection (VAD) method and variable

frame rate analysis (VFR) method. The hybrid feature frame selection tech-

nique has shown better performance over the conventional fixed frame rate

(FFR) frame selection and the individual VAD and VFR methods of frame
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selection for various noise scenarios.

The number of frames per second (frame rate) made in the hybrid fea-

ture frame selection technique is approximately equal to the traditional FFR

method. Frame rate can also be controlled by selecting suitable parameter val-

ues in the threshold function. This flexibility is beneficial for optimizing the

number of speech frame selection according to different applications.
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Chapter 4

Multi-Frame Rate based

Multiple-Model for

Disguised Speech 1

4.1 Introduction

The performance of the speaker identification system degrades when a mis-

match between the training and the testing speech data occurs due to a mod-

ification in the person’s voice. Modification in a person’s voice can occur un-

intentionally or intentionally. Modification in the voice due to factors like soar

throat, emotional state, change in weather, old age are categorized as unin-

tentional. In intentional modification, a person deliberately tries to modify

1This chapter is based on the following published article: S. Prasad, Z.-H.Tan, R. Prasad,

“Multi-frame rate based multiple-model training for robust speaker of disguised voice”, 16th

Wireless Personal Multimedia Communications (WPMC), Atlantic City, New Jersey, U.S.A.,

Jun. 2013. IEEE Press.
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his/her voice either to hide his/her own identity or to be recognized as a target

speaker to gain access to their information. Intentional voice modification by a

person is also referred to as voice disguise and it is quite frequently encountered

in the forensic science area besides other areas. Further, voice disguise can be

done electronically, for example, by using the software “voice changer” [24] or

non electronically, for example, by speaking fast, adopting a foreign accent,

imitation and whisper.

Various studies addressing voice disguise by utilizing electronic means has

been done [92], [93]. But a very limited number of studies were found on the

non-electronic voice disguise case. A study in the forensic science area [94]

has revealed that non-electronic voice disguise is more common in crimes than

the electronic voice disguise. Therefore, non-electronic voice disguise requires

attention and is the focus of the present chapter. From here onwards, non-

electronic voice disguise will be simply referred to as voice disguise only.

In this chapter, three different types of voice disguises/speaking styles to-

gether with the normal speaking style has been selected for the study. Out

of the three different voice disguises used in the study, two are variants of the

imitative style, namely, synchronous and repetitive synchronous imitation and

one is the fast speaking non-imitative style.

Earlier works on non-electronic voice disguise was done by Endreas and his

group [73] and they showed that, disguisers succeed in varying the formant

structure of their voice but they failed in adapting it to the formant structure

of a target speaker. The effects of ten different types of voice disguises on the

Forensic Automatic Speaker Recognition System is reported in [14]. It is found

that, different types of voice disguises degrades the system’s performance by

different degrees.

An imitator usually tries to copy the target speaker’s voice by modifying the

prosodic elements. A study [95] has been conducted investigating the effects of
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professionally imitated voice on the prosodic speaker identification system. It

is found that F0 range outperformed the other eleven voice source and prosodic

features investigated for identification. It has also been showed that it was eas-

ier to copy the target speaker on the basis of the whole sentence than by words.

In [15], various voice modifications were tried by the speakers on their own wish

and its effects on the Gaussian Mixture Model (GMM) based speaker identi-

fication system were reported. It showed significant decrease in performance

when the GMM speaker model were trained utilizing only the normal speaking

style. The robustness of a new speech feature, namely, “Pyknogram frequency

estimate coefficients (pykfec)” against voice disguise has been studied in [16]

and it showed an overall positive effect on identification accuracy.

All the above studies mostly used a frame size ranging from 10-30 ms (vocal

tract information) with a fixed frame shift of half the frame size for extracting

speech features for speaker modeling. This setting is preferred because many

state of the art speaker identification system has shown good performance with

this [3,16,50]. But when voice disguise is present, chances of differences in the

speaking rate of the training and the test speech data are high and the use

of the fixed frame rate for speech feature extraction might not give the best

results.

Therefore, this chapter investigates the usage of different frame rates for

feature extraction and speaker modeling and its effects on the speaker identi-

fication performance under voice disguise case is investigated. It is achieved

here by keeping the frame size fixed at say, 25 ms for capturing the vocal tract

information but by changing the frame shifts in the range varying between 1-10

ms. Based on the outcomes of the investigation, further, a multi-frame rate

based multiple-model speaker identification system is proposed and is showing

promising results over the baseline systems which used single frame rate for

feature extraction and speaker modeling.
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The rest of the chapter is organized as follows. The next section presents

the multi-frame rate based multiple-model speaker identification system. The

experimental setups and the results obtained were presented in section 4.3.

Finally, section 4.4 gives a summary of the chapter.

4.2 Multi-Frame Rate based Multiple-Model

In this section, the conventional GMM based speaker identification method

is briefly explained followed by the proposed multi-frame rate based multiple-

model method.

4.2.1 GMM

The speaker models are built utilizing the Gaussian mixture density of a speaker

‘sp’ given by

p(~x|λsp) =

N∑
i=1

wigi(~x) (4.1)

where, ~x is a D-dimensional feature vector, wi are the mixture weights with

the constraint
N∑
i=1

wi = 1 and gi(~x) are the Gaussian component densities given

by:

gi(~x) =
1

(2π)
D
2

√
detCi

× exp{−1

2
(~x− ~µi)

TCi(~x− ~µi)} (4.2)

with mean vector ~µi and covariance matrix Ci. Therefore, the complete Gaus-

sian mixture density can be parameterized by:

λsp = {wi, ~µi, Ci} i = 1, ...., N (4.3)
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Given a training speech data φsp of speaker ‘sp’ and X = { ~x1, ~x2, ....., ~xR}

being the extracted feature vectors from the speech frames with a fixed frame

size and frame shift, the training of speaker model ‘sp’ aims to estimate the

parameters of λsp by maximizing the likelihood function:

p(X|λsp) =

R∏
t=1

p(~xt|λsp) (4.4)

In the speaker identification from a group of M speakers, the speaker model

with the maximum log-likelihood criteria for a test utterance will be decided

as the true speaker of the test utterance. The maximum log-likelihood criteria

will be given by [96] :

ŜP = arg max
1≤sp≤M

R∑
t=1

log p(~xt|λsp) (4.5)

4.2.2 Multi-Frame Rate based Multiple-Model Speaker

Identification

In this, the speech features from the training dataset φsp of speaker ‘sp’ are

extracted in a different way from the one discussed above. First, multiple

copies (say Q) of the training dataset (φsp1 , φsp2 , ......., φspQ) were generated.

From each Q training datasets of the speaker sp, frames were then made by

keeping the frame size fixed to 25ms but by varying the frame shifts across

the Q training datasets, resulting in different frame rates for each. Q GMM

speaker models are then developed (λsp1, λsp2, ...., λspQ) utilizing the speech

features obtained from each of the Q training speech dataset of the speaker sp.

The decision rule of the speaker identification for a given test utterance ~xt

is given by:
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ŜP = arg max
1≤sp≤M

Q∑
j=1

R∑
t=1

log p(~xt|λspj) (4.6)

4.3 Experimental Setups and Results

The database, the different speaker identification experiments conducted and

the results obtained are discussed below:

4.3.1 Database

The CHAINS corpus consist of both male and female speech recordings of 36

speakers [97]. All the speech recordings were carried out in two sessions with

a gap of about two months period. The first recording session was conducted

in a quiet office environment utilizing the microphone U87 condenser. The

second recording session was carried out in a sound proof booth with AKG

C420 headset condenser microphone. The bulk of the speakers belonged to

same dialect, raising the difficulty of speaker identification and they provided

the speech recording in six different speaking styles. Out of the six different

speaking styles, four were selected for the experiments and is briefly explained

below:

1. Normal speaking (Norm):

The speakers spoke the given texts/sentences in a speaking style with

which they usually interact with others in their daily life. It belonged to

the first recording session.

2. Synchronous speaking (Sync):

Two speakers spoke the given texts/sentences in synchrony with each

other. This produced a change in the timing of the speech production

units to be relatively equal but slower than the Norm speaking style [98].
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This speaking style is considered as an imitative style type but is not

significantly different from the Norm speaking style. It also belonged to

the first recording session.

3. Fast speaking (Fast):

The speakers recorded the texts/sentences at a much higher speed than

the Norm speaking style. An example of the fast speaking has been played

for the speaker so that they get an idea about how much fast to speak.

It comes under the non-imitative speaking style and it belonged to the

second recording session.

4. Repetitive synchronous Imitation speaking (Rsi):

A recorded sentence in the target speaker’s voice was played in a repeating

loop and the speakers joined the repeating loop after the second loop and

spoke the sentence in synchrony for about 6 times in which they tried their

best to mimic the speaking style of the target. The penultimate recording

is then kept. It produced a close match to the target speaker’s voice in

timing and intonation. It was originally developed as a pedagogical tool

for teaching prosody [99]. It is also considered as an imitative style and

it belonged to the second recording session.

For speaker modelling, ∼70 sec Norm speech data was used per speaker. For

testing, ∼30 sec unseen speech data of all the speaking styles were utilized.

During testing, the 30 sec data were broken into ∼5 sec long utterances making

a total of 6 utterances per speaker and a grand total of 216 test utterances from

all the speakers for each speaking style.

4.3.2 Speaker Identification Experiments

Speaker identification experiments were conducted for speaker models devel-

oped utilizing features which are extracted from frames generated using differ-
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ent frame rates and for multiple-model method. For the performance evalua-

tion, the GMM based speaker models which utilized a frame size of 25ms and

a frame shift of half the frame size has been used as the baseline. Therefore,

speaker identification experiments were conducted for the following three cases:

1. Baseline system, where speaker models are made utilizing frames of frame

size 25ms with a single fixed frame shift of 10ms. Let us call this system

as Bsline-10ms.

2. Speaker models obtained utilizing frames of fixed frame size i.e. 25ms but

by varying the frame shift in the range 1ms-9ms. Therefore, 9 speaker

models were made, and for each, speaker identification experiments were

conducted. Let us call these models as 1ms, 2ms,...., 9ms.

3. Speaker models obtained using the multi-frame rate based multiple model

method described in Section 4.2.2. Here, three copies of the training

dataset has been made. From each copy, frames were made utilizing one

of the following frame shifts i.e. 3ms, 6ms and 9ms resulting in 3 different

models for each speaker. Let us call this system as MFR-mul.

Twelve liftered MFCC excluding the 0th coefficient were used for feature

extraction from the 25ms frames. Sinusoidal liftering is done [100] in order to

have similar magnitude values for low and high order cepstral. Cepstral mean

removal was applied to the coefficients to compensate for channel variations.

64 component GMM were used for speaker modeling.

4.3.3 Results

The identification accuracies obtained for the speaker identification experi-

ments conducted for the different voice disguised test data and normal test

data for the three cases mentioned in Subsection 4.3.2 has been tabulated in
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Table 4.1. From the table, it can be observed that varying the frame shift in

the range 1 ms-9 ms for the Norm speaking test data showed either slight im-

provement in identification accuracy or remained equal to 99.07% of Bsline-10

ms system. A maximum of 0.93% relative improvement is observed for the 4

ms and 6 ms case compared to the Bsline-10 ms. For the Sync speech test

data, similar observations have been found with a maximum of 1.46% rela-

tive improvement in the identification accuracy for the 4 ms and 9 ms case

compared to the Bsline-10 ms. However, for the 5 ms case 0.49%, decrease in

identification accuracy is observed compared to the Bsline-10 ms. Fast speech

70

75

80

85

90

95

100

105

Norm Sync Fast Rsi

1ms
2ms
3ms
4ms
5ms
6ms
7ms
8ms
9ms
Bsline-10ms

Figure 4.1: Comparison of the identification accuracies(%) obtained using

speaker models with different frame rates and the baseline for the four speaking

style’s test data [104].
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test data has seen more number of declines in the identification accuracies,

namely for 1 ms, 4 ms and 5 ms case. A maximum relative improvement of

2.18% has been observed for 3 ms case compared to the Bslin-10 ms. The best

results amongst all test data has been observed for the Rsi speech. Here, the

identification accuracy has always seen improvement and a maximum of 9.71%

relative improvement has been observed compared to the Bsline-10 ms system.

Fig. 4.1 depicts the comparison of the systems utilizing different frame rates

for speaker modeling (1 ms-9 ms) and Bsline-10 ms for disguised and normal

test speech in graphical form. 3 ms system outperformed all others systems for

Fast and Rsi speech.

Encouraged by the results obtained by varying the frame shifts (Case 2),

MFR-mul system is developed. Comparing MFR-mul and Bsline-10 ms, it can

be observed that for Norm speech test data, both systems performed equally,

but for Sync, Fast and Rsi test data, MFR-mul outperformed the Bsline-10 ms

system. It showed a relative improvement of 0.48% for Sync, 3.29% for Fast

and 12.72% for Rsi speech as compared to Bsline-10ms. Compared with the

different frame rate models (1 ms- 9 ms), MFR-mul always performed better

for the fast and Rsi test speech data.

Fig. 4.2 shows a comparison of the identification accuracies of the three

systems (Different frame rate models: 1 ms-9 ms, MFR-mul and Bsline-10 ms)

for the different test speech data. For different frame rate models (1 ms-9

ms), identification accuracy has been calculated by averaging across a single

speaking style. It also confirms the superior performance of the MFR-mul

system over the others. Fig. 4.3 shows the comparison of the different systems

by taking an average of the identification accuracies of all the test speech data.

Here also MFR-mul outperformed the others.
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4.4 Summary

The effects of using different frame rates for feature extraction and speaker

modeling on the speaker identification performance is investigated in this chap-

ter for the case, when speaker models were trained from normal speaking style

data but the test data contains disguised speech. Three types of disguised

speech from the CHAINS corpus, namely, fast (Fast), synchronous (Sync) and

repetitive synchronous imitation (Rsi) were used for the experiments. Out of

these three, Sync and Rsi comes under the imitative style type and Fast is the

non-imitative style voice disguise. Experimental results showed that, the use

of different frame rates may improve the speaker identification performance

for disguised speech. Based on these observations, further, a multi-frame rate

based multiple-model is proposed and it has outperformed the conventional

GMM system utilizing the single frame rate method on an average across the

different speaking styles test data. For the Rsi voice disguise, it gave the best

identification accuracies.
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Chapter 5

Multistyle Training and

Fusion Framework for

Disguised Speech1

5.1 Introduction

Chapter 4 investigated different frame rates for speaker modeling under the

voice disguised mismatched condition. Here, speaker models were built from

the normal speaking style training data and the test data consisted of different

speaking styles/disguised speech data. In this chapter, a different approach

1This chapter is based on the following published article: S. Prasad, Z. -H. Tan, R.

Prasad,“ Multistyle training and fusion for speaker identification of disguised voice”, 1st In-

ternational Conference on Communications, Connectivity, Convergence, Content and Co-

operation (IC5), Mumbai, India, Dec. 2013 & submitted article: S. Prasad, R. Prasad,

“Fusion multistyle training for speaker identification of disguised speech”, Wireless Personal

Communications.
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is used. Here, different multistyle training strategies for speaker modeling are

investigated for the disguised speech. In multistyle training, instead of using

only normal speaking style speech data for training, other easily produced

speaking styles, like fast speaking and synchronous speaking are also utilized

for training the speaker model. This approach can be implemented for security

conscious organization for monitoring the employees, where chances of leakage

of information through the employee by adopting voice disguise over phone or

even otherwise is high.

Early research on multistyle training method was done by Lippmann [19]

for speech recognition. He utilized, five easily produced speaking styles (nor-

mal, fast, clear, loud and question-pitch) for speech model training. It showed

improved performance for speech recognition of stress speech, produced dur-

ing a workload task. A colored noise based multicondition training method is

explored for noise robustness [58] because it has been noted that many envi-

ronmental noises contain colored spectra. In [59], multicondition training data

were generated by artificially adding white noise at different SNRs to multiple

copies of clean training data. Speaker models made using this multicondition

training data showed improved performance for speaker identification under

unknown environmental noise types. A multiple-model frame work has been

proposed in [101] for handling noisy speech in speech recognition task. In this,

specific models for a particular noise type with a specific SNR value are trained,

and for recognition, the best model matching the test speech was selected from

others. It has reported superior performance than the multicondition training

method.

Inspired by these works, this chapter investigates different multistyle train-

ing strategies for voice disguised test speech data. For multistyle training of

speaker models, three easily produced speaking styles, namely, normal (Norm),

synchronous (Sync) and fast (Fast) speaking styles were used. For testing

the models, unseen speech data from all the above mentioned speaking styles
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(Norm, Sync and Fast) are used. In addition to this, the repetitive synchronous

imitation (Rsi) speaking style/disguised speech which was not used for train-

ing is also used for the testing. Important insights were drawn from the results

obtained. This lead to the development of the fusion multistyle training frame-

work.

The rest of the chapter is organized as follows. The next section gives a brief

discussion on the disguised speech/speaking style which are available with the

speaker. The different multistyle training strategies investigated in this chapter

together with the proposed fusion multistyle training method are presented in

section 5.3. The dataset, the speaker identification experiments conducted and

the results obtained are explained in section 5.4. Finally, section 5.5 summarize

the chapter.

5.2 The Different Speaking Styles

A wide range of options are available with the speakers to modify their speaking

style. For example, speakers can bring a change in their voice by raising or

lowering the pitch, chewing something (like chewing gum), cheek pulling, lip

protrusion, whisper, mimicry, adopting foreign accent, using a different dialect,

objects in mouth and objects over mouth [102]. Predicting the full range of

voice disguises which can be used by the speakers in advance is very difficult

because it is dependent on the person ingenuity, thereby, making the speaker

identification task more difficult.

For the experiments conducted in this chapter, four speaking styles, namely,

Normal (Norm), Synchronous (Sync), Fast and Repetitive Synchronous (Rsi)

Imitation were used, whose full details can be found in [97] and is briefly ex-

plained in Subsection 4.3.1
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5.3 Multistyle Training Strategies and the Fu-

sion Framework

The different multistyle training strategies investigated in this chapter for the

speaker identification performance under mismatched conditions arising due to

disguised speech are presented first, followed by the description of the proposed

fusion framework.

1. Multistyle Training Strategies

The speaking styles Norm, Sync and Fast explained briefly in Subsection

4.3.1 were used for multistyle training. The spectrogram of these three

speaking styles for a speech utterance can be seen in Fig 5.1. It can

be observed that Norm and Sync speaking styles did not appear very

different but Fast speaking resulted in a quite different spectrogram than

the Norm speaking style. The following four types of multistyle training

strategies were investigated in this chapter:

• Multistyle Training I (Mul-I):

The training utterances from the three speaking styles Norm, Sync

and Fast were mixed randomly. This was then used for feature

extraction and speaker modeling. A frame size of 25ms with a frame

shift of 10ms was utilized for feature extraction.

• Multistyle Training (Mul-II):

All the training utterances from the Norm speaking style were simply

concatenated with all the utterances from the Fast speaking style

followed by all the utterances from the Sync speaking style. The

training set obtained was then utilized for feature extraction and

speaker modelling. A frame size of 25ms with a frame shift of 10ms

was utilized for feature extraction.

• Multistyle Training III (Mul-III):
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Figure 5.1: Norm, Sync and Fast speaking style spectrogram for the speech

utterance “If it doesn’t matter who wins, why do we keep score? [105]

First utterance of Norm speaking style was concatenated with the

first utterance of the Fast speaking style followed by the first utter-

ance of the Sync speaking style. The same way of concatenation was

used for the second utterance and the process was continued till all

the utterances come to an end. The resultant training set was then

utilized for feature extraction and speaker modeling. For this also,

a frame size of 25ms with a frame shift of 10ms was used for feature

extraction.

• Multistyle Training IV utilizing higher frame rate for feature extrac-

tion from Fast Speaking style (Mul-IV):

This training strategy is similar to the Mul-III training strategy

except that for feature extraction from the Fast speaking style, a
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higher frame rate was used. This was achieved by utilizing a frame

size of 25ms with a smaller frame shift of 3ms.

For the speaker identification task from a group of M speakers for a

given test utterance X = { ~x1, ~x2, ....., ~xR}. The decision rule is based

on the maximum log-likelihood rule [96], which is given by the following

equation:

Ŝpk = arg max
1≤spk≤M

R∑
t=1

log p(~xt|λspk) (5.1)

2. Fusion Framework

To explore the diversity of the different multisytle training strategies, the

fusion framework combines the multistyle training strategies at the deci-

sion level for identifying the correct speaker from a group of M speakers.

In this chapter, two multistyle training strategies Mul-II and Mul-IV were

combined by the following combination by maximum rule:

Ŝpk = arg max
1≤spk≤M

max
1≤j≤2

R∑
t=1

log p(~xt|λspkj ) j = {Mul-II,Mul-IV}.

(5.2)

where λspkj represents the speaker model obtained from utilizing the

multistyle training strategy j

5.4 Experimental Setups and Results

The database used for the experiments, the different speaker identification ex-

periments conducted in this chapter and the results obtained are discussed in

this section.
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5.4.1 Database

The CHAINS corpus [97] consisting of 36 speakers, mostly from the same dialect

is selected to carry out the experimental evaluations. The speakers provided

their voice in 6 different speaking styles for this database. Out of the six speak-

ing styles. four speaking styles, namely, Norm, Sync, Fast and Rsi were used

and a brief explanation of each of these styles were given in Subsection 4.3.1.

All the speakers recorded their speech in two different sessions separated by 2

month’s period. The first session was carried out in a quiet office environment

consisting of some noise utilizing the microphone U87 condenser. The second

session was carried out in a sound proof booth utilizing AKG C420 headset

condenser microphone.

The speaker models were built utilizing ∼ 70s training speech data per

speaker. For testing ∼ 30s unseen speech data per speaker were used. For

testing, 5 sec long utterances were used. Therefore, 6 utterances per speaker

and a total of 192 utterances from all the speakers were tested.

5.4.2 Speaker Identification Experiments

Speaker identification experiments were conducted for the different multistyle

training strategies and the proposed fusion framework discussed in section 5.3.

For performance evaluation, speaker identification experiments employing sin-

gle style speaker models and multiple model framework were also conducted

and are briefly described below:

Single style

GMM speaker models were developed utilizing the training speech data from

the single speaking styles of Norm, Sync and Fast resulting in three speaker
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models. Let us call these models as NORM, SYNC and FAST, respectively.

Speech features were extracted with 25ms frame size with 10ms frame shift.

Multiple model

The single style speaker models obtained above, namely, NORM, SYNC and

FAST for the individual speaking styles of Norm, Sync and Fast, respectively,

were combined at the decision level to get the multiple model framework. The

following three types were utilized in this study:

• Multiple model I (MM-I):

The likelihoods “p(X|λspk)” from the single style speaker model NORM,

SYNC and FAST for a test speech utterance X were added and the

speaker model which maximizes this value is decided as the true speaker

of the test utterance.

• Multiple model II (MM-II):

The combination rule is similar to the Fusion method described in Section

5.3. The maximum of the log-likelihoods from the single style models

NORM, SYNC and FAST for a test speech utterance were selected and

the speaker model which maximizes this value is decided as the true

speaker of the test utterance.

• Multiple model III (MM-III):

The maximum of the log-likelihoods from the single style speaker models

NORM, SYNC and FAST for a speech utterance at the frame level are

selected. The speaker model which maximizes the log-likelihood criteria

(eqn. 5.1) for the whole test speech utterance is decided as the true

speaker of the test utterance.
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Twelve liftered MFCC feature were extracted excluding the 0th coefficient

from the speech frames for speaker modeling. Cepstral mean removal of the

coefficients were taken for channel compensation and 64 component GMMs

were utilized for modeling the speakers.

5.4.3 Results

Table 5.1 depicts the speaker identification accuracies obtained for the differ-

ent multistyle training strategies, proposed Fusion method, single style train-

ing method and the multiple-model methods for the test speech data which

consisted of the three types of voice disguises along with the Norm speaking

style test data. Comparing the different multistyle training strategies (Mul-I,

Mul-II, Mul-III and Mul-IV) and the single style training method for speaker

modeling (NORM, SYNC and FAST), it can be observed that all multistyle

training strategies outperformed the single style training method on an average

across the different test speech data. Comparing the different multistyle train-

ing strategies with the multiple models (MM-I, MM-II and MM-III), it can be

seen that, all multistyle training strategies performed better than the multi-

ple model MM-I but MM-II and MM-III outperformed the multistyle training

strategies Mul-I and Mul-II on an average across the different speaking style’s

test speech data.

Comparing only the different multistyle training strategies, it is interest-

ing to note that different multistyle training strategies showed quite different

identification performances for the different speaking style’s test speech data

and which can prove quite beneficial in improving the robustness of the overall

system. Multistyle training Mul-II showed the best performance for the Norm

speaking style test data and worst for the Fast speaking style compared to

the other multistyle training strategies. On the other, hand Mul-IV showed

the best performance for the Fast and Rsi speaking styles and worst for the
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Norm and Sync speaking styles. These observations lead to the proposed fu-

sion method in which fusion of the Mul-II and Mul-IV training strategies at

the decision level has been done.

96.4

96.39

97.1

96.99

97.56

88.95

82.54

76.61

93.61

96.63

96.86

70
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85
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Mul-I Mul-II Mul-III Mul-IV Fusion NORM SYNC FAST MM-I MM-II MM-III

Figure 5.2: Comparison of the average identification accuracies across the Norm

and disguised test speech data for the various speaker identification experiments

[106].

The Fusion method has shown the best performance outperforming all other

methods considered in this chapter when an average of the different speaking

style’s test speech data were considered. A graph showing the comparison of the

proposed Fusion method with the other methods is shown in Fig 5.2. The graph

shows the average identification accuracies of the different speaking style’s test

data and it clearly shows the better performance of the Fusion method. Com-

pared to the different multistyle training strategies, the Fusion method has

achieved the best performance for the Rsi voice disguise outperforming Mul-I

by ∼ 2.78% , Mul-II by ∼ 2.31 %, Mul-III by ∼ 1.85 % and Mul-IV by ∼

0.46%. A comparison of the different multistyle training strategies and the
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Fusion method for the different speaking style’s test data is also depicted in

Fig 5.3. From Fig 5.3, it can be observed that the Fusion method has showed

a more stable performance across the different speaking style’s test data com-

pared to the other multistyle training strategies. Compared with the single

88

90

92

94

96

98

100

Norm Sync Fast Rsi

Mul-I Mul-II Mul-III Mul-IV Fusion

Figure 5.3: Comparison of the identification accuracies of the different multi-

style training strategies and the Fusion method for Norm and disguised speech

test data [105].

style training methods NORM, SYNC and FAST, like all multistyle training

strategies, the Fusion method has also shown a significantly better performance

on an average across the different speaking style’s test speech data. A com-

parison of the Fusion and the single style training methods is also shown in

Fig 5.4. Fusion method again showed a stable performance across the different

speaking style’s test data compared to the single style training methods. Com-

pared with the multiple model methods. For the Rsi voice disguised test data,

Fusion showed an improvement of ∼ 4.63 % from MM-I, ∼ 3.7 % from MM-II

and ∼ 2.31 % from MM-III. For the Sync voice disguised test data MM-II per-
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Figure 5.4: Comparison of the Fusion and the Single style training method for

the Norm and voice disguised test speech data [105].

formed better than the Fusion by ∼ 0.48 %. For Fast and Norm test speech

data, Fusion either showed improvement or performed equally. A comparison

of the different multiple models and the Fusion method is also presented in

Figure 5.5. In this case also the proposed Fusion method has shown a more

stable performance than the other methods.
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Figure 5.5: Comparison of Fusion and the multiple model methods for the

different voice disguises and Norm speaking style [106].

5.5 Summary

Four different types of multistyle training strategies obtained from the speak-

ing styles normal, Synchronous and fast training data were investigated for the

speaker identification accuracy under the voice disguised scenario. The three

voice disguised test data used were the unseen Sync and Fast test data, and

the repetitive synchronous imitation which is not used during the training. All

the speech data were taken from the CHAINS corpus. The multistyle training

strategies has given useful insights for improving the robustness of the speaker

identification system. A fusion method is therefore proposed combining the

two multistyle training strategies at the decision level. The fusion method has

shown the best performance on an average across the different voice disguised

test data compared to the different multistyle training strategies , single style
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training and the multiple-model methods considered in this chapter. The fu-

sion method has also shown a more stable performance for the different voice

disguises compared to the other methods.
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Chapter 6

Multiple Frame Rates for

Feature Extraction and

Reliable Frame Selection at

the Decision for Disguised

Speech1

6.1 Introduction

In Chapter 4, we have observed that utilizing a different value of frame shift

instead of the usual 10ms frame shift for frame making from the speech signal

1This chapter is based on the following published article: S. Prasad, Z.-H. Tan, R. Prasad,

“Multiple frame rates for feature extraction and reliable frame selection at the decision for

speaker identification under voice disguise” ,CONASENSE, no.1, pp-29-44, Jan. 2016.
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for feature extraction may lead to a positive effect on the speaker identification

accuracy under the voice disguised scenario. Here, only normal speech data

from speakers were utilized for training the models. Different speaker models

were made by varying the frame shift in the range 1ms-9ms. Frame shift

3ms showed the best performance amongst the other frame shift models. In

this chapter, not only normal speaking style but other speaking styles, namely,

synchronous and fast speaking are also utilized for training the speaker models.

For frame making from the training speech data, a frame shift of 3ms is utilized.

The value of 3ms frame shift is used because it showed the best performance

for the normal speaking style based speaker models presented in Chapter 4.

Further, during the testing or at the decision level, a method has been developed

which performs reliable frame selection from the test speech utterance. Only

these reliable frames will then participate in the final decision making process.

This chapter is organized as follows. The next section describes the reliable

frame selection method at the decision. Section 6.3 presents the database, the

different speaker identification experiments conducted and discusses the results.

The last section summarizes the chapter.

6.2 Reliable Frame Selection at the Decision

During the testing phase in the speaker identification system, a speech utter-

ance from an unknown speaker is given. The task is to find out the speaker of

the given speech utterance from a group of M people.

Let us assume that the speech utterance is represented by a feature vector

sequence X = {x1,x2,x3, .......,xT}. Conventionally, the speaker model which

maximizes the posterior probability for the feature vector X is decided as the

true speaker of the given speech utterance. It is represented by the following
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equation [96]:

Ŝ = arg max
1≤s≤M

T∑
t=1

log p(xt|λs) (6.1)

where xt is a D-dimensional feature vector and T is the total number of feature

vector in the given speech utterance. p(xt|λs) is the Gaussian mixture density

of speaker ‘s’, which is a linear weighted sum of N component densities bj(xt)

p(xt|λs) =

N∑
j=1

wjbj(xt) (6.2)

Here, wj are the mixture weights with
N∑
j=1

wi = 1.

In the proposed method the speaker of the given speech utterance is found from

a group of M people in a different way, which is described below [103]:

1. Instead of finding the speaker of the whole speech utterance, the speaker

of each frame is determined, which is given by the following decision rule:

Ŝ = arg max
1≤s≤M

p(xt|λs) (6.3)

2. In this step, how reliable is the decision of step 1 about the speaker is

calculated. For this the distance between the probability measure of the

identified speaker with the rest of the speakers is calculated as follows:

Ds = p(xt|λŜ)− p(xt|λs) k = {1, 2, 3, ....,M} − {Ŝ} (6.4)

In this way (M-1) distances will be calculated. The larger the distance

Ds will be, the more confidence will be in the decision.

3. The distances which are calculated in step 2 are now compared with a

threshold value θ. If Ds > θ, the frame is kept otherwise it is discarded.

4. After step 3, all the unreliable frames of the test speech utterance will

be discarded and the remaining frames will only participate in the final

decision making.
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5. The final decision rule for the speech utterance which now consist of only

reliable feature vector sequence is same as equation 6.1.

6.3 Experimental Setup and Results

In this Section, the database used for the experiments, the various speaker

identification experiments conducted and the results obtained are discussed.

6.3.1 Database

CHAINS database is used to conduct the experiments. The details of this

database can be found in [97]. The database consisted of speech recordings in

different speaking styles from 36 speakers consisting of both males and females.

The speakers mostly belonged to the same dialect which made the identification

task tougher and they provided the speech recordings in two sessions. The two

sessions were seperated by a period of two months, the first session speech

recordings were carried out in a quiet office environment with some office noise

utilizing the microphone Neumann U87 and the second in a sound proof booth

using the microphone AKG C420. Four different types of speaking styles were

utilized for the experiments, namely, normal (Norm), synchronous (Sync), fast

(Fast) and repetitive synchronous imitation (Rsi) speaking.

Norm and Sync speech recordings were done in the first session and Fast

and Rsi in the second. The use of different microphone and speaking styles

provided a good mismatch both in channel and style suitable for the present

mismatch problem experimentation.

For the training of speaker models, three speaking styles, namely, Norm,

Sync and Fast were utilized. For testing, unseen speech recordings from Norm,

sync and fast were used. Additionally, Rsi speaking which was not used for
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training is also included for the testing. For training ∼ 70sec speech data per

speaker were utilized. For testing, three, ∼ 10sec speech utterances per speaker

i.e. total 30 sec speech data per speaker were utilized from Norm, Sync and fast

speaking. For Rsi speaking, four, ∼ 10sec utterances per speaker were used.

6.3.2 Speaker Identification Experiments

Speaker models were developed utilizing 64 component Gaussian mixture mod-

els. 12 liftered MFCC excluding the 0th coefficient were used as speech features.

Liftering is done to rescale the higher and lower order cepstral so that they have

similar magnitudes. Cepstral mean removal is also utilized for channel com-

pensation.

The following speaker identification experiments were conducted:

1. Two speaker models were made for each speaker in the group of M speak-

ers. One utilized a frame size of 25ms and a frame shift of 10ms for feature

extraction and the other utilized a frame size of 25ms with a frame shift

of 3ms for feature extraction.

During testing, similarly two sets of frames were made. One with 25ms

frame size and 10ms frame shift and the other using 25ms frame size and

3ms frame shift. Reliable frame selection from these two sets were carried

out using the method described in Section 6.2. For the final decision, reli-

able frames selected from these two sets were simply combined for feature

extraction, and the decision making is done by the same method using

the decision rule of equation 6.1. Let us call this system as Proposed.

For evaluating the proposed system, the following two baseline system

were considered:

2. The baseline system utilized the Norm, Sync and Fast speaking styles for

speaker modeling. The frame size of 25ms with a frame shift of 10ms were
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used for feature extraction and speaker modeling. This resulted in three

speaker models for each speaker which was developed utilizing the Norm,

Sync and fast speaking style speech data. This typical value of 25ms for

frame size and 10ms for frame shift have been utilized in many research

studies [14], [16], [96], which uses different database, and is found to give

the best identification accuracy. Let us call this baseline system as Bsln1.

3. In chapter 3, it has been shown that varying the frame rate by keeping the

frame size fixed and changing the frame shift may improve the speaker

identification accuracy under voice disguise scenario. The frame shift

of 3ms has shown the best performance. Here, speaker modeling utilized

only Norm speaking style. For this baseline, speaker models utilized three

speaking style, namely, Norm, Sync and Fast and for feature extraction

a frame size of 25ms with a frame shift of 3ms were used. In this way,

three speaker models for each speaker were made using Norm, Sync and

Fast speaking. Let us call this baseline system as Bsln2.

6.3.3 Results and Discussions

Table 6.1 shows the identification accuracies obtained for the Bsln1 and the

Bsln2 systems for the different speaking style test speech data. The test speech

data which are mismatched both in style and channel with the training speech

data are shown with a superscript of star and the test speech data which are

matched in channel are shown without any superscript of star. For example,

for the training speech data of Norm (first row of the Table 6.1), the test speech

data, namely, Fast and Rsi are mismatched both in style and channel and are

shown with a superscript of star and the test speech data, namely, Norm and

Sync are matched in channel and therefore are shown without any superscript

of star.

From the Table 6.1, it can be observed that, when the test speech data are
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Table 6.1: For the normal and disguised speech test data, identification accura-

cies (%) obtained for Bsln1 & Bsln2 system where speaker models are trained

using different speaking style’s speech data [12].

Train

Speech Test Speech Bsln1 Bsln2

Norm Norm 100 100

Sync 100 100

Fast? 90.74 92.59

Rsi? 77.78 81.94

Average 92.13 93.63

Sync Norm 96.30 95.37

Sync 100 100

Fast? 76.85 78.70

Rsi? 72.22 68.37

Average 86.34 85.61

Fast Fast 99.07 100

Rsi 95.83 93.75

Norm? 66.67 67.59

Sync? 60.19 62.96

Average 80.44 81.08

mismatched both in speaking style and channel, the identification accuracies

decreased markedly for both Bsln1 and the Bsln2 systems. The performance

declined more for Sync and Fast speaking style train data as compared to the

Norm training data.

Comparing the Bsln1 and the Bsln2 systems, it can be observed that, for the

Norm speaking style train speech data, Bsln2 performed better than the Bsln1

on an average across the different speaking style test data. Bsln2 showed a
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relative improvement of 1.63% over Bsln1. Bsln2 performed equally with Bsln1

for the test speech that are matched in channel but for test speech mismatched

both in style and channel, Bsln2 performed better than Bsln1. Bsln2 showed a

relative improvement of 2.04% and 5.35% over the Bsln1 for Fast and Rsi test

speech, respectively.

For Sync speaking style train speech data, Bsln1 performed better than the

Bsln2 on an average across the different speaking style test speech data. Bsln1

showed a relative improvement of 0.85% over Bsln2.

For Fast speaking style train speech data, again Bsln2 performed better

than the Bsln1 on an average across the different speaking style test speech

data. Bsln2 showed a relative improvement of 0.80% over Bsln1.

Comparing Bsln1 system for the different train speech data, it can be ob-

served that, Norm train speech data performed the best on an average across

the different speaking style test speech data. Bsln1 system trained using Norm

speaking style train data showed a relative improvement of 6.7 % and 14.5%

over Bsln1 system trained using Sync and Fast training speech data, respec-

tively. Similar kind of observation is found for Bsln2 system. Bsln2 system

trained using Norm speaking style train speech data showed a relative im-

provement of 9.4% and 15.5% over Bsln2 system trained using Sync and Fast

speaking speaking style train speech data. From these observation it can be

concluded that, if a single speaking style has to be used for training the speaker

model under voice disguise, Norm speaking style gives the best performance

over Sync and Fast. Therefore, in the Proposed system, only Norm speaking

style train speech data has been used for modeling the speakers.

For the reliable frame selection from the test speech signal used in the

Proposed system, the value of the threshold θ needs to be determined. One

way of calculating the threshold θ is by observing all the distances Ds (refer

to Section 6.2) for a given test speech utterance. Selecting a larger value of
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θ compared to the minimum of all the distances Ds found for the test speech

utterance, may lead to the rejection of a large number of frames, which might

remove frames which carry some important speaker specific information. These

rejected frames will now not be able to participate in the decision making about

the speaker of the test speech utterance and may result in a decrease in the

identification accuracy. Therefore an optimum value of θ needs to be used and

is tough to estimate. Further, the threshold value θ should vary for different

test speech utterances. But for this initial study, θ value is kept fixed and is

determined by observing the identification accuracies found by testing only the

Rsi test speech utterances and speaker models trained using only the Norm

speaking style train speech data. The frame size of 25ms with a frame shift of

10ms is utilized for feature extraction.

Figure 6.1: For the Rsi speech test data, identification accuracies (%) obtained

by using different threshold value θ [12]

For calculating the fixed θ value, different θ values were chosen by observing

the minimum of all the distances Dk from a few Rsi test speech utterances.
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The identification accuracies obtained for each of these θ value for the Rsi test

speech is plotted and is shown in Fig. 6.1. For more clarity log of θ is plotted

instead of θ. The θ value which gave the highest identification accuracy, i.e.,

1.411e-42 is decided as the θ value for the conduction of the experiments of the

Proposed system.

Table 6.2: Identification accuracies (%) of the baseline and the proposed sys-

tems for Norm and disguised speech test data [12].

Test

Speech Bsln1 Bsln2 Proposed

Norm 100 100 100

Sync 100 100 100

Fast∗ 90.74 92.59 92.59

Rsi∗ 77.78 81.94 83.33

Average 92.13 93.63 93.98

Table 6.2 shows the identification accuracies for the Bsln1, Bsln2 and the

Proposed system for the different speaking style test speech data. From the

table, it can be observed that the Proposed system has performed slightly

better than the Bsln1 and the Bsln2 on an average across the different speaking

style test speech data. For test speech matched in channel, the Proposed

system performed equally with the Bsln1 and the Bsln2. For the Fast speech,

mismatched both in speaking style and channel, Proposed system performed

better than Bsln1 but did not do better than the Bsln2. For the Rsi test

speech data, mismatched both in speaking style and channel, the Proposed

system achieved a relative improvement of 4.35% and 1.70% over the Bsln1

and the Bsln2, respectively.
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6.4 Summary

This chapter studies the effect of reliable frame selection at the decision level

for voice disguised test speech. For frame selection from the test speech signal,

frames were made at two different frame rates utilizing a fixed frame size but

varying the frame shift. It showed an overall improvement over the baseline

methods and performed well for the disguised test speech of repetitive syn-

chronous imitation (Rsi). Future studies will aim at involving more types of

disguised speech and development of a better algorithm for the threshold value

selection utilized in the reliable frame selection method.
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Chapter 7

Brain Computer Interface

for Classification of Motor

Imagery Tasks from the

Same Limb Using EEG 1

7.1 Introduction

The production of the speech signal is related to our thoughts and thereby

brain signals. The study of the brain signals might give useful insights for

improving the speaker identification system. An attempt has been made in this

1This chapter is based on the following published article: S. Prasad, Z.-H. Tan, R. Prasad,

A. R. Cabrera, Y. Gu, K. Dremstrup, “Feature selection strategy for classification of single

trial EEG elicited by motor imagery”, 14th Wireless Personal Multimedia Communications

(WPMC), Brest, France, Oct. 2011. IEEE Press.
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direction by studying a Brain-Computer Interface (BCI) system. BCI connects

the humans with the computer not through the conventional ways but through

brain signals. Two devices through which brain signals can be acquired from

the humans for interface with the computer are: Electroencephalogram (EEG)

and Electrocorticogram (ECoG). EEG is a non-invasive method for recording

the electric signals from the brain and it is easily recorded using electrodes

which are placed over the scalp. On the other hand, ECoG is an invasive

method, where the electrodes are placed directly over the brain surface for

recording the brain activity. It can pose serious health problems to the humans.

Therefore, out of these two methods, EEG is more popular in BCI research as

it is easy to use, non-invasive, and is cheaper too [107]. It has been found that

imagination of different tasks shows discriminative changes in the brain signals.

This property of the brain signal proves, highly beneficial to the people suffering

from neuro-muscular diseases, like, brain stem stroke and amyotrophic lateral

sclerosis. In this, the person is in a locked-in state where his or her feelings and

thinking capabilities are intact, but they have problem in movement related

tasks, speech or vision, that is, they have problems in expressing their feelings

to others and to carry out their day-to-day activities. Through BCI research,

such people have now started expressing their needs/feelings to others. BCI

tries to understand their intentions through brain signal manipulations and

convey it to the outer world [108] [109], [110].

A BCI system can be broadly divided into 5 parts: signal acquisition, signal

pre-processing, feature extraction, classification and controlling interfaces [107].

In signal acquisition, the brain activity in the form of electrical signals are

captured from the human brain. The electrical signals are generated by the

interactions of the neurons present in the brain. Instead of directly feeding

the acquired brain signals to the feature extraction part, it is pre-processed in

which mainly removal of artifacts like eye blinking and enviroment noise are

carried out. Feature extraction part tries to search for a compact feature set
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which uniquely represent the task thought in the brain. The classification stage

decides which task has been thought out of the two or more tasks based on

the given brain features. After the classification, it can be used to carry out

applications like controlling a robot to do different tasks or to write letters in

the controlling interface stage.

Out of the 5 above mentioned parts of the BCI, “feature selection and ex-

traction” from the brain signals holds a very important role in reducing the

misclassification rate of a BCI system and is the focus of the present chap-

ter. Some of the channels used for acquiring the brain signals may be noisy

or irrelevant in relation to a particular motor imagery tasks. Therefore, selec-

tion of relevant channels from the total channel is required. In [111] channel

selection is carried out utilizing support vector machine (SVM) and in [112]

using genetic algorithms for reducing the misclassification rates. Two methods

were used in [113] to choose a smaller subset of features, one was based on

the information theory approach and the other utilized genetic algorithm. The

genetic algorithm outperformed the information theoretic approach. Different

data segment related parameters like length of the segment, the number of tri-

als and the starting position of the segment were included in [114] for feature

extraction from the brain signals. This chapter studies the motor imagery task

from the same limbs. The brain-signals (EEG) data set used in this study, has

been previously used for identification of motor imagery tasks, but a very lim-

ited effort has been put on feature selection and extraction for improving the

classification accuracy [115]. Therefore, this chapter deals with improving the

classification accuracy by proposing a feature selection strategy which consists

of two steps: time-segment selection through visual inspection and channel

selection through Fisher-ratio analysis in the frequency domain.

The rest of the chapter is organized as follows. The next section presents

the EEG data set used in this study. Section 7.3 describes the feature selection

strategy and feature extraction. Section 7.4 discusses the experiments and
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results. Finally, Section 7.5 gives a summary of the chapter.

7.2 Dataset

Subjects were asked to imagine isometric plantar flexion of the right foot at

different target torque (TT) and rate of torque (RTD). When the subjects

were imagining these movements, their brain signals were captured using the

EEG cap in which electrodes were mounted as per 10-20 system [115]. Torque

applied to achieve the maximum contraction of the isometric plantar flexion is

referred to as Maximal Voluntary Contraction Torque (MVCT). It is measured

here by taking the average of three MVCT values. Based on the MVCT, four

different types of motor imagery tasks from the right limb can be defined. TT

can be ‘low’ or ‘high’. 30% of MVCT is referred to as low and 60% of MVCT

as high. Similarly, RTD can be ‘ballistic’ or ‘moderate’ in accordance with how

fast the TT is achieved. Achieving TT as fast as possible is termed as ballistic

and in approximately 4s is termed moderate. Therefore, the following 4 types

of tasks can be defined.

• BH: Imagining Ballistic movement to reach High TT.

• BL: Imagining Ballistic movement to reach Low TT.

• MH: Imagining Moderate movement to reach High TT.

• ML: Imagining Moderate movement to reach Low TT.

The subjects were given visual cues on the computer screen about which

task out of the above four to be imagined and when to start the imagination

process. 9 subjects in the age group of 22-33 years participated in the data

collection process. The full details of the tasks and the description of the

dataset can be found in [115]. In this chapter, the classification of only two
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types of motor imagery tasks out of the above 4, namely, BH and BL were

considered and the EEG recordings for the task were collected from 6 subjects.

7.3 Feature Selection and Extraction Strategy

This section discusses the proposed feature selection strategy and the feature

extraction method from the EEG signal.

• Feature Selection

From the EEG signal obtained by the motor imagery tasks, the following

two types of feature selection were made:

1. Segment selection from the time-domain EEG Signal

In this, the time-domain EEG signal from a particular channel for

the individual classes BH and BL of all the 6 subjects were averaged

and plotted as shown in Fig. 7.1. After observing all such figures,

2 segments were selected from the total signal. Both segments were

2s long. The first segment starts 1s before the “onset of the task

imagination (represented by 0 in the time axis of the Fig. 7.1)” and

ends after 1s of the “onset of the task imagination”. The other starts

after 2s of the “onset of the task imagination”. The two segments

selected were also depicted in the Fig. 7.1. These 2 segments rep-

resented the best 2s discriminative parts in the total time-domain

EEG signal for the 2 classes BH and BL.

2. Channel selection from a total of 32 channels used for capturing the

EEG signal.

All the 32 channels, which were used for capturing the brain activity

during a motor imagery task might not contribute equal information

about the imagined task. Some might contain other prominent in-

formation like eye blinking (termed artifact). Therefore, a smaller
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Figure 7.1: For sub F, channel Cz graph for the class BH and BL, task onset is

at 0s, and the two segments extracted are from -1s to 1s and from 2s to 4s [116]

.

subset of channel selection which are more relevant to the imagined

task may improve the classification accuracy. To perform channel

selection Fisher criterion is used. The discrete wavelet transform

(DWT) (briefly described below) of the EEG signal from a particu-

lar channel, say “j”, for the BH and BL class will be used to calculate

the amount by which BH and BL class differs utilizing the Fisher’s

ratio given by [119]:
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FRatioj =
(mBHj

−mBLj
)2

σ2
BHj
− σ2

BLj

(7.1)

Here, mBHj
and mBLj

represent the mean of the samples from the

BH and BL class, respectively and σBLi and σBLi represent the

variance of the samples from the BH and BL class, respectively, for

the jth channel.

The channel with the highest value of the FRatio shows the highest

amount of discrimination between the two class, BH and BL and is con-

sidered more reliable than other channels for classification. Based on the

FRatio calculation, four subsets of channels out of the 32 channels were

selected for the classification. They are the best 9, best 8, best 7 and

best 6 channels.

• Feature Extraction

The EEG signal obtained after the feature selection step is band pass

filtered in the range 7-30Hz and notch filtered at 50Hz. The DWT of the

signal is then obtained. DWT gives the coefficients of the mapping of

the signal into a group of basis functions obtained by the translation and

scaling of the mother wavelet. Here, orthogonal wavelet is utilized. In

the Multiresolution Analysis (MRA), the mother wavelet ψ(t) is related

to the high pass filter g(n) and scaling function φ(t) is related to the low

pass filter h(n) by the following equations [117] [116]. :

ψ(t) =
√

2Σng(n)φ(t− n) (7.2)

φ(t) =
√

2Σnh(n)φ(t− n) (7.3)

Also, for orthogonal wavelets, the mother wavelet can be obtained from

the h(n) as g(n) can be given in terms of h(n) as:

g(n) = (−1)1−nh(1− n) (7.4)
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For the selection of the optimal mother wavelet, 21 h(n) filters of length

4, parameterized with a value in the range −π, π are used and is described

in [118]. The DWT utilizing the mother wavelet ψ(t) gives a set of detail

spaces dx(j, k), partly localized in time and frequency. Instead of directly

using these detail spaces as feature, we will calculate marginals mx(j)

defined below, which will make it insensitive to time.

mx(j) =

N

2j−1∑
k=0

cx(j, k) j = 1, 2, ....., J (7.5)

cx(j, k) =
|dx(j, k)|

J∑
j=1

N

2j−1∑
k=0

|dx(j, k)|

(7.6)

Here, dx(j, k) = 〈x(t), ψ(j, k)(t)〉. The j term is related to the scale and

k term is related to the translation by ψj,k = 2
−j
2 ψ(2−jt − k). J is the

highest decomposition level and J = log2N , N is the total number of

samples in the signal x.

After the calculation of the marginals for all the 21 mother wavelets

for a particular channel. Each of these 21 feature space is individually

used for classification. The mother wavelet which achieved the lowest

misclassification rate is used for calculation of the feature space for the

rest of the experiments.

7.4 Experiments and Results

Experiments for classifying the two classes of the motor imagery tasks, namely

BH and BL, were conducted for the baseline and the proposed feature selection

strategy.

The baseline system is based on the research study [115]. Here, band pass

filtering of the signal in the 0.1Hz to 0.75Hz and notch filtering at 50Hz is
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used. EEG signals from the 7 preselected channels, namely, F3, F4, C3, Cz,

C4, P3 and P4 were used for feature extraction. Features were extracted using

the DWT, which is described in the Section 7.3. This system is referred to as

Baseline.

Using the proposed feature selection strategy which employed time-segment

selection and channel selection by Fisher ratio, experiments were conducted

utilizing the best 9, best 8, best 7 and best 6 channels as described in Section

7.3, and are referred to as best 9, best 8, best 7, and best 6 channels respectively.

For performance evaluation, experiments were also conducted for all channels,

which means, apart from the channel selection step by the Fisher ratio, rest all

remained the same as described in Section 7.3 in all channel case.

Classification is carried out using the support vector machines, and is de-

scribed in [121] for both the baseline and the proposed systems. Support vector

machine is selected because of its good generalization property, insensitivity to

over training and curse of dimensionality [120]. Here, Gaussian kernel function

is used and a 3-fold cross validation is utilized for all the experiments.

The misclassification rate, i.e,

the number of wrongly identified test instances

total number of test instances
× 100% (7.7)

for the different systems discussed above employing the feature selection strat-

egy and the baseline system are tabulated in Table 7.1. The test instances were

taken from all the 6 subjects, namely, A, B, C, D, E and F.

From the table, it can be observed that, all the systems employing the

proposed feature selection strategy outperformed the Baseline system on an

average across the subject’s misclassification rate. An absolute improvement

of 7.5% in the average misclassification rate of all the subjects for the Best 7

channel is achieved over the Baseline system.

Comparing the different systems which have employed the proposed feature
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selection strategy in full, i.e the Best 9, Best 8, Best 7 and Best 6 channel, it can

be seen that the average misclassification rate has not shown much difference.

The Best 7 channel showed the best performance amongst the 4.

Comparing the performance of the Best 7 channel with the All channels

and 7 Preselected channel of the Baseline. The Best 7 channel achieved an

absolute improvement of 5.52% over the All channel and 4.79% over the 7

Preselected channel of the Baseline. This points to the importance of feature

selection, particularly channel selection before classification for reducing the

misclassification rate

7.5 Summary

This chapter presents a feature selection strategy for the classification of the

EEG signal in one of the two classes, namely, Ballistic High and Ballistic Low

of the motor imagery tasks from the same limbs. It consisted of time-segment

selection through visual inspection and channel selection through Fisher ratio

calculation in the frequency domain. The experimental results suggest that,

instead of using all channels for the classification, a smaller and more relevant

subset of the channels related to the task can perform better. Therefore, feature

selection and extraction is an important step for improving the classification

accuracy of the BCI. Further, the EEG signal can be combined with the speaker

identification task for helping in the decision making process, by providing

another opinion about the speaker identity through brain signal.
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Chapter 8

Conclusions & Future Work

This chapter presents the conclusions followed by a discussion on the future

work.

8.1 Conclusions

This study developed efficient and robust speaker identification system under

mismatched conditions. A mismatched condition occurs, when the training

speech data conditions differ from the testing speech data conditions. For

example, the training speech data has been recorded in a clean (noise free)

office environment and the testing speech data contains environmental noise,

like car noise, train noise and street noise as well.

Different types of mismatch are possible. A mismatch can occur due to

environmental noise, voice disguise, handset or channel variations, emotional

state of the person and if the person is having some throat infection. This

study focuses on the mismatch that occurs because of the environmental noise
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and voice disguise.

1. Mismatch due to environmental noises:

For test speech data containing environmental noises, a hybrid feature

frame selection method from the time-domain speech signal has been de-

veloped. The hybrid technique takes into account the signal to noise ratio

and it combines two different types of feature frame selection method,

namely, voice activity detection (VAD) and the variable frame rate anal-

ysis (VFR) method which complements each other. It has been experi-

mentally found that, hybrid technique efficiently captures the

• speech part rejecting the non-speech part and

• the changes in the temporal characteristics of the speech signal, like

vowel and plosives.

under various noise scenarios. It also provides the flexibility to adjust

the frame rate (number of frames selected per second). This flexibility

will prove beneficial for handling different types of speaker identification

applications.

2. Mismatch due to voice disguise:

When a person intentionally alters his/her own voice, either to sound like

a target to steal the target’s personal information or to hide their own

identity, voice disguise occurs. To tackle the mismatch that occurs due

to voice disguise, the following methods have been developed.

• In speaker identification, the normal convention is to cut the speech

signal into shorter segments called frames of 25-30 ms length size

with a fixed frame shift of half the frame size i.e 10-15 ms for fea-

ture extraction. Typically, a frame size of 25 ms with a frame shift

of 10 ms is used. The use of this typical value has shown good

results in many research studies involving mismatched conditions.
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This study investigated different frame shifts, ranging from 1-10 ms,

keeping the frame size fixed at 25 ms for speaker identification un-

der voice disguise case. It has been found that, changing the frame

rate can lead to an increase in the speaker identification accuracy

under voice disguise. Further, a multiple model frame work has been

developed. It combines features, that are extracted utilizing three

different frame shifts. This resulted in improved accuracy over the

fixed frame shift method.

• In a security conscious organization, chances of the usage of voice

disguise for information leakage is quite high. Speaker identifica-

tion system can be employed in such organizations to identify the

suspects. To make the speaker identification system robust for this

purpose, the effects of multistyle training has been explored. Four

different types of multistyle training strategies have been developed.

It has shown encouraging results over the single style training. Fur-

ther, a fusion framework has been proposed, in which, out of the

four, the best two training strategies has been used. It showed bet-

ter performance over single style, investigated multistyle and the

multiple-model methods.

• Inspired by the experimental results obtained under voice disguise, a

multiple frame rate for feature extraction and reliable frame selection

at the decision level has also been proposed. It has showed an overall

better performance over the baseline method.

In addition to the above, a feature selection strategy for a different field of

Brain Computer Interface (BCI) has also been developed. It consists of two

step:

• time segment selection by visual inspection and

• channel selection utilizing Fisher ratio analysis in the frequency domain.
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Feature selection in this way achieved an improvement over the baseline method.

8.2 Future Work

Future work will involve

• development of efficient speech enhancement techniques which can be

combined with the proposed hybrid technique of this study for further

improving the speaker identification under environmental noise.

• exploring and collecting different voice disguised speech samples from

speakers and developing a dataset for facilitating speaker identification

research for disguised speech.

• testing the efficiency of the proposed techniques of this study for disguised

speech on the above developed dataset.

• the merging of the two field, i.e., how voice production affects the brain

signals and how this knowledge can be utilized for developing more effi-

cient and robust speaker identification system under adverse conditions.
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